
ISSN 2309-3684 

Математическое 
моделирование
и численные методы

Басок Б.И., Гоцуленко В.В. Математическое моделирование
режима вибра- ционного горения в распределенной камере
горения воздухонагревателя в доменной печи. Математическое
моделирование и численные методы, 2018, № 4, с. 25–40.

Источник: https://mmcm.bmstu.ru/articles/179/

Параметры загрузки:

IP: 216.73.216.210

01.02.2026 13:57:18



Математическое моделирование режима вибрационного горения… 

25 

УДК 669.162.23                            DOI: 10.18698/2309-3684-2018-4-2540 

 

Математическое моделирование режима 

вибрационного горения в распределенной камере 

горения воздухонагревателя доменной печи 

© Б.И. Басок, В.В. Гоцуленко 

Институт технической теплофизики НАН Украины, Киев, 03057, Украина 

 

В данной работе предпринята попытка построения квазитрехмерной математи-

ческой модели, которая описывает режим вибрационного горения в вертикальной 

камере горения регенеративного воздухонагревателя доменной печи, рассматри-

вая ее как распределенную динамическую систему. 
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Введение. Многие элементы теплоэнергетического оборудования 

являются потенциально неустойчивыми, и при изменении режимов 

их работы возникают автоколебания, создающие различные аварий-

ные ситуации. В частности, в металлургическом производстве для на-

грева доменного дутья используют регенеративные воздухонагрева-

тели (кауперы). Известно, что с повышением их тепловой нагрузки 

создается значительный экономический эффект. Однако с повыше-

нием тепловой нагрузки возрастают колебания давления, из-за кото-

рых возникают усилия порядка 20 т, действующие на конструкцию 

5–7 раз в секунду [1]. 

Введение феноменологического запаздывания процесса горения 

сыграло выдающуюся роль в теории вибрационного горения и обусло-

вило механизм неустойчивости горения [2]. Решение проблемы воз-

буждения автоколебаний теплоподводом (конвективным или при сго-

рании топлива) в работе [2] свелось к обоснованию другого 

механизма, порождающего восходящую ветвь на напорной характери-

стике теплоподвода ( ).F Q  При теплоподводе к потоку в области пе-

рехода ламинарного режима в турбулентный на графике зависимости 

гидравлических потерь по длине ( )ℓh Q  образуется нисходящая ветвь, 

где выполняется неравенство ( ) / 0<ℓdh Q dQ  [3]. В области теплопод-

вода из-за снижения плотности потока изменяется его скорость. Воз-

никшее в результате этого местное тепловое сопротивление ( )т ,h Q  

как обосновано [3], также имеет нисходящую ветвь. Таким образом, 

нисходящие ветви сопротивлений ( )ℓh Q  и ( )тh Q  порождают восхо-

дящую ветвь на напорной характеристике теплоподвода ( )F Q  и сос- 
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тавляют механизм возбуждения как термоакустических автоколеба-

ний, так и вибрационного горения.  

Механизм, обусловленный тепловым сопротивлением, действует 

локально в области теплоподвода, и при его описании можно исполь-

зовать математические модели с сосредоточенными параметрами.  

Однако, так как каупер имеет значительную высоту (около 30–50 м), 

то в данной работе для изучения гидродинамики в камере горения ка-

упера рассматривается ее дискретно-распределенная модель (рис. 1).  

В нижней части камеры горения в зоне теплоподвода расположен ко-

лебательный контур с сосредоточенными параметрами, где действуют 

механизмы запаздывания сгорания Л. Крокко и отрицательного тепло-

вого сопротивления, возбуждая автоколебания. Данные колебания  

через границу 1−1 передаются в верхнюю часть камеры горения — 

динамическую систему с распределенными параметрами.  

 

Рис. 1. Схема условного разделения камеры 

горения: 

0-1-1-0 — колебательный контур с сосредоточенными 

параметрами, внутри которого расположена зона теп-

лоподвода; 1-2-2-1 — колебательный контур с распре- 

деленными параметрами 

 

С появлением эффективных алгоритмов численного интегриро-

вания [4] и методов CFD (сomputational fluid dynamics) моделирова-

ния стал возможным численный анализ многих задач гидрогазо- 

динамики. Однако расчет автоколебаний по прямым уравнениям 

гидрогазодинамики даже в этом случае сопряжен со значительными 
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трудностями. При интегрировании уравнений гидродинамики и теп-

ломассопереноса применительно к распределенной части камеры го-

рения каупера мы используем метод расщепления [5] и его конечно-

разностную реализацию, основываясь на результатах работ [6–7].  

Динамика в сосредоточенной зоне теплоподвода камеры горе-

ния. В области теплоподвода (см. рис. 1) возникает тепловое сопротив-

ление, которое для произвольного политропного подвода теплоты с по-

казателем политропы n  можно описать следующей зависимостью [3]: 

2
22 1

0 0 0 0
т 0 1 0

1 1

1
( ) 1 .

1 2

−
 

   ρ−   = ρ − + −       −       

n

v

w T sk
h n с T T

n T s
 

Система уравнений, определяющая движение в контуре с дис-

кретными параметрами, имеет следующий вид [1–3]: 

( )

( ) ( )

;

,

 = −

 = − τ − ϕ


a

a

dQ
L F Q P

dt

dP
C Q t P

dt

                               (1) 

где ,aL  aC  — акустические параметры колебательного контура;

( ) ( ) ( ) ( )под т= + −F Q F Q A Q h Q  — напорная характеристика тепло- 

подвода; ( )подF Q  — напорная характеристика нагнетателя, подающе-

го воздух в камеру горения; 1 1=Q s w  — объемный расход продуктов 

сгорания на выходе из сосредоточенного колебательного контура; 

( )ϕ P  — функция, определяющая характеристику сети ( ) 2
др ,h Q k Q=

c
 

подключенной к колебательному контуру; τ  — запаздывание сгора-

ния топлива; t  — переменная времени. 

Приведем систему уравнений (1) к безразмерному виду, полагая 

параметры стационарного режима 

* *
дрξ ξ,= ⇒ =Q P k  

где 
( ) ( ) ( )под T

др 2

ξ ξ ξ
.

ξ

F A h
k

+ −
=  

Вводим безразмерные переменные: *
1 1 ,= ≡z Q Q m Q  *

2 = ≡z P P  

2 ,≡ m P  ' = tt m t  и ' .τ = τtm  В новых переменных система (1) будет 

иметь вид  
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( ) ( ) ( )

( ) ( )

2 1
2 под 1 1 2 1 1 2 T 1 1 2

1

1 2
1 2 21 1

1 др 2 12
2

;
'

' ' .
'

t
a

t
a

m m dz
L m F z m m A z m m h z m z

m dt

m m dz
C z t z k m m

m dt

−−

 
= + − − 

 

  = − τ − 
 

  (2) 

Под действием механизмов запаздывания сгорания топлива  

Л. Крокко и отрицательного теплового сопротивления [3] в контуре  

с сосредоточенными параметрами самовозбуждаются автоколебания. 

Обозначим через ( )*
1z t  и ( )*

2z t  — периодическое решение систе- 

мы (2), описывающее эти колебания. Данные функции далее исполь-

зуют при формировании граничных условий для колебательного кон-

тура с распределенными параметрами (см. рис. 1). 

Динамика в распределенной части камеры горения. В безраз-

мерных переменных уравнения движения (Навье — Стокса), нераз-

рывности и теплопереноса в приближении Буссинеска применитель-

но к вертикальной камере горения имеют вид [6–7]: 

( ) ( ) 2grad Gr ,rp
t

∂ + ∇ = − + ∇ + θ
∂
V

V V V e                    (3) 

( )div , 0,=x tV                                       (4) 

( )1div Pr grad ,−∂θ  + θ − θ = ∂ r
t

V Ve                         (5) 

где [ ] 3
1 2Gr = γ − νℓg T T  — число Грасгофа; Pr = ν a  — число Пранд-

тля. 

Рассматриваемую задачу будем решать численно с помощью яв-

ной трехэтапной схемы расщепления, дискретизируя временную ось 

( )1 1 :+ = + ∆ + ∆n nt t t n t  

( )( )2+ Gr ;= − τ − ∇ ∇ + θɶ n n n
rV V V V V e                      (6) 

( ){ }1div Pr grad ;

;

−θ = θ − τ θ − θ + τ

∆ = ∇ τ

ɶ

ɶ

n n n n n
r

n
p

V V e

V

                  (7) 

( )
( ){ }

1

1 1

grad ;

div Pr grad .

+

+ −

= − τ

θ = θ − τ θ − θ + τ

ɶ

ɶ ɶ

n n

n n n n
r

pV V

V V e
                   (8) 
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Данная схема представляет собой комбинацию схемы О.М. Бело- 

церковского расщепления по физическим факторам для уравнений 

гидродинамики [7] и пересчетной разностной схемы Н.И. Никитен- 

ко [8] для уравнения конвективного переноса концентрации газа и 

объединяет их преимущества. Турбулентный характер движения да-

лее будет учитываться введением эффективного коэффициента вяз-

кости νef  [6].  

Запишем векторное уравнение (3) в цилиндрической системе ко-

ординат в предположении цилиндрической симметрии (т. е. 0).∂ ∂ϕ =  

Компоненты скорости среды в этой системе имеют следующий вид: 

.= +r ru wV e e  

Итак,  

( ) 2 ;u t u p tr u u t∂ ∂ + ∇ = −∂ ∂ + ∆ −V  

( ) Gr ,∂ ∂ + ∇ = −∂ ∂ + ∆ + θw t w p z wV  

где действия операторов ∇V  и 2∇  определяются формулами 

( ) ;∇ = ∂ ∂ + ∂ ∂u r w zV  

2
2

2

1
.

∂ ∂ ∂ ∇ = + ∂ ∂ ∂ 
r

r r r z
 

Уравнение (5) в цилиндрической системе координат будет иметь 

следующий вид: 

1 11
Pr Pr .− − ∂θ ∂ ∂θ ∂ ∂θ   + θ − + θ − =    ∂ ∂ ∂ ∂ ∂    

r u w w
t r r r z z

 

Таким образом, в цилиндрической системе координат схема рас-

щепления (6)−(8) имеет вид 

( ) ( ) ( ) 2
2

2

1 1
;

  ∂ ∂∂ ∂ ∂= + τ − − + +  ∂ ∂ ∂ ∂ ∂   
ɶ

uw ru u
u u ru

r r z r r r z
             (9) 

( )
2 2

2

1 1
Gr ;ef

w w w
w w ruw r

z r r r r r z

 ∂ ∂ ∂ ∂ ∂ = + τ − − + + + θ  ∂ ∂ ∂ ∂ ∂  
ɶ         (10) 

1 1 1
;

Pr Pr

    θ − θ ∂ ∂θ ∂ ∂θ   
 + θ − + θ − =    τ ∂ ∂ ∂ ∂      

ɶ n n n
n n n n n

r z
ef ef

r u w w
r r r z z

    (11) 
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2
1

2

1 1
;−   ∂ ∂ ∂ ∂ ∂ ∂ + = τ +     ∂ ∂ ∂ ∂ ∂∂    

ɶ ɶn n
p p u w

r r
r r r r r r zz

              (12) 

1 ,+ = − τ∂ ∂ɶn nu u p r  1 ;+ = − τ∂ ∂ɶn nw w p z                    (13) 

1 1 1 1
.

Pr Pr

+     θ − θ ∂ ∂θ ∂ ∂θ   
 + θ − + θ − =    τ ∂ ∂ ∂ ∂      

ɶ ɶ
ɶ ɶ

n n
n n n

r z
ef ef

r u w w
r r r z z

     (14) 

Для получения конечно-разностного алгоритма на основе рас-

смотренного выше метода расщепления воспользуемся разнесенной 

(шахматной) сеткой [6], приведенной на рис. 2. 

 

Рис. 2. Схема рассматриваемой расчетной области и шаблон для расчета 

скорости ', ,i ju  скорости , ' ,i jw  давления ,i jp  и температуры ,θi j  

 

Получаем следующие конечно-разностные уравнения:  

( ) ( )
( )

( ) ( )( )

( )
( ) ( )( )

( )

2 2
', ', ' 1, ' 1,

' 1, ',2', '

', ' 1,2

', 1 ', ', 12

1 1 1
1 1

2 2

1 1
3 2 1 2

3 2

1
1 2 1 2

1 2

1
2 ;

+ −

+

−

+ −

     = + τ − + − − −     ∆     

 − − + + − + −
 ∆ + ∆

− + − − +
+ ∆

+ − + ∆ 

ɶi j i j i j i j

i j i ji j

i j i j

i j i j i j

u u u u
r i i

uw uw i u i u
z i r

i u i u
i r

u u u
z

  (15) 
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( )

( ) ( )( ) ( )( )

( )
( )( ) ( )( )

,

2 2
, , , 1 , 1

, 1,

1, , , 1,2

, 1 ,
, 1 , , 12

2

1 2 1 2
1 2

1
3 2 1 2

1 2

1
2 Gr ;

2 i j

i j i j i j i j

i j i j

i j i j i j i j

n n
i j i j

i j i j i j ef

w w w w
z

i uw i uw
i r

i w w i w w
i r

w w w
z

′ ′

′ ′ ′ ′+ −

′ ′ ′ ′−

′ ′ ′ ′+ −

+
′ ′ ′+ −

τ= − − −
∆

τ  − + − − +
 + ∆

  +τ + − − + − +  + ∆

θ + θ  + − + +  ∆ 

ɶ

  (16) 

( ) ( ) ( ), , 1 , 1,,

1
;

4
′ ′ ′+ +′ ′ = + +i j i j i j i ji j

uw u u w w                       (17) 

( ), , ,

,

,

1

1 2 Pr

1

Pr

n
n n n n

i j i j i j r
ef

i j

n
n n

z
ef

i j

w r u
i r r r

w
z z

′

′

′

  τ ∂ ∂θ 
 θ = θ + τ − θ − −  + ∆ ∂ ∂   

 ∂ ∂θ − τ θ − ∂ ∂  

ɶ

       (18) 

( ) ( )( ) ( )( )

( )

( ) ( ) ( )

1, , , 1,2

, 1 , , 12

, 1, , , 1

1
1 2

1,5

1
2

1 1 1
1 2 ;

1,5

+ −

+ −

′ ′ ′ ′− −

 − − − − − +
 − ∆

+ − + =
∆

     = − − − + −    τ − ∆ ∆  

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

n n n n
i j i j i j i j

n n n
i j i j i j

i j i j i j i j

i p p i p p
i r

p p p
z

i u i u w w
i r z

     (19) 

( )1
, , 1, , ;+
′ ′ +

τ= − −
∆

ɶ ɶ ɶn n n
i j i j i j i ju u p p

r
    ( )1

, , , 1 , ;+
′ ′ +

τ= − −
∆

ɶ ɶ ɶn n n
i j i j i j i jw w p p

z
    (20) 

( )
1

, , ,

,

,

1

1 2 Pr

1
,

Pr

n n n n
i j i j i j r

ef
i j

n

z
ef

i j

w r u
i r r r

w
z z

+
′

′

′

  τ ∂ ∂θ 
 θ = θ + τ − θ − −  + ∆ ∂ ∂   

 ∂ ∂θ − τ θ − ∂ ∂  

ɶ
ɶ

ɶ
ɶ

       (21) 

где 1 2;′ = +i i  1 2.′ = +j j  
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Численное моделирование турбулентного характера движе-

ния. При моделировании учета турбулентного режима движения  

в уравнениях движения воспользуемся результатами работы [6]. Ки-

нематическая вязкость газа и нагретого воздуха сравнительно неве-

лика. Движение в камере горения имеет турбулентный характер, так 

как число Рейнольдса Re ∼1 ν  довольно значительно, а именно оно  

в первую очередь определяет режимы течения (ламинарный или тур-

булентный) и динамику перехода между ними.  

Таким образом, адекватность математической модели в значи-

тельной степени зависит от правильного учета в данных условиях 

эффектов турбулентности. Как зарождение [6] турбулентности, так  

и неустойчивость решения разностного уравнения имеют одну и ту 

же природу. Слагаемые, вводимые в разностные уравнения для обес-

печения их устойчивости или автоматически появляющиеся при не-

которых способах аппроксимации, определенным образом модели-

руют влияние усредненных в масштабах ячейки расчетной сетки 

флуктуации физических величин, т. е. турбулентность.  

С возникновением турбулентности благодаря зарождению микро-

вихрей резко усиливается перемешивание жидкости, и эффективная 

вязкость ,µef  рассчитываемая как коэффициент пропорциональности 

между тензором напряжений и тензором скоростей деформаций для 

усредненного макродвижения, возрастает. В этом случае она имеет две 

составляющие т( ),µ = µ + µef  обладающие разной физической приро-

дой: первая обеспечивает молекулярный перенос импульса, вторая — 

конвективный перенос импульса микровихрями. Ясно, что в случае 

ламинарного движения эффективный коэффициент динамической вяз-

кости совпадает с коэффициентом молекулярной вязкости µ . Широ-

кий круг моделей турбулентности основывается на моделировании  

коэффициента турбулентной вязкости. Простейшими моделями явля-

ются алгебраические, когда коэффициент тµ  моделируется некоторым 

алгебраическим выражением, связанным с разными (усредненными) 

характеристиками движения среды.  

Для учета турбулентности в разностные уравнения необходимо 

вводить дополнительные параметры. При реальном движении такие 

параметры «появляются» автоматически с образованием турбу-

лентности. В расчет их необходимо закладывать заранее, а отсутствие 

этих параметров как раз и приводит к расходимости численного мето-

да. «Физическая» причина такого рода расходимости и даже ее необ-

ходимость становится очевидной, если учесть, что мелкомасштабные 

турбулентные вихри отбирают энергию у крупномасштабного (по от-

ношению к вихрям) движения. Если же эту убыль энергии не учиты-

вать, потоки разгоняются до бесконечных скоростей, что и становится 
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проявлением расходимости расчетной схемы. Приведенные рассужде-

ния указывают также на то, что турбулентность необходимо учиты-

вать именно в диссипативном члене, описывающем убыль энергии 

макродвижения (например, моделируя коэффициент вязкости). 

Граница устойчивости расчетной схемы движения жидкости на 

сетке с характерным размером расчетной ячейки ∆  [6] соответствует 

началу зарождения турбулентных вихрей масштабом меньше ∆  (ко-

торые невозможно описать на данной сетке). Начиная с этого момен-

та микровихри, отбирая энергию у макродвижения, выражаются  

в увеличении эффективной вязкости жидкости. Ее величина соответ-

ствует границе устойчивости расчетной схемы.  

Таким образом, параметры эффективной вязкости необходимо 

подбирать таким образом, чтобы расчетная схема с такой вязкостью 

находилась на границе устойчивости. Это соответствует учету при 

данных параметрах движения (скорости и размерах области, в кото-

рых оно происходит) вихрей, имеющих размеры меньше размеров 

ячейки расчетной сетки.  

Предположение о равномерной турбулизации жидкости по всему 

объему, выдвигаемое в модели с постоянной эффективной вязкостью, 

во многих случаях является чересчур грубым. Рассмотрим модель 

турбулентности, ассоциированную с сеточным числом Рейнольдса 
–1
тRe .∆ ∆= ∆νV  Здесь ∆V  — скорость в пределах данной ячейки, 

т тν = µ ρ  — турбулентная составляющая кинематической вязкости. 

Поскольку именно число Рейнольдса определяет переход в турбу-

лентный режим движения жидкости, можно предположить, что се-

точное число Рейнольдса во всем объеме жидкости постоянно. Это 

приводит к следующей модели турбулентной вязкости, линейно за-

висящей от скорости [6]: 

т Re .∆ ∆ν = ∆V                                         (22) 

С учетом (22) эффективные кинематическая вязкость, числа 

Грасгофа и Прандтля определяются формулами 

( ) ( )

( )

13
1 2

Re ;

Gr Re ;

1
Pr Re .

ef

ef

ef

V

g T T V

V
a

∆ ∆

−
∆ ∆

∆ ∆

ν = ν + ∆

= γ − ν + ∆

= ν + ∆

ℓ                        (23) 

В модель турбулентности (23) входят три параметра: Re ,∆  ν  и .∆  

При фиксированной сетке ( const)∆ =  в области, где ∆V → 0, эффек-

тивная вязкость совпадает с молекулярной, т. е. .ν → νef  В расчетных 
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ячейках, в которых велико значение сеточной скорости ∆V , турбу-

лентная вязкость может во много раз превышать молекулярную [7].  

При записи разностных уравнений гидродинамики на разнесен-

ной сетке необходимо на гранях расчетной ячейки задавать значе- 

ния вязкости ,′νr
i j  и , ,′νz

i j  числа Грасгофа ( )
, 1 22

′ ′
= γ − ×

i jefGr g T T  

( ) 1
3

, ,

−
′ ′ ′ ′× ν + νℓ

r z
i j i j  и Прандтля , ,Pr .′ ′= νr r

ef i j i j a  Значения коэффициен- 

тов вязкости в углах расчетной сетки ,′ ′νr
i j  и ,′ ′νz

i j  определяют как 

средние арифметические из соседних коэффициентов ,′νr
i j  и , :z

i j′ν  

( ), , , 1 2,′ ′ ′ ′ +ν = ν + νr r r
i j i j i j  ( ), , 1, 2.′ ′ ′ ′+ν = ν + νz z z

i j i j i j  Сеточное число Рей-

нольдса выбирают с помощью численных экспериментов. Число Re∆  

(при фиксированной расчетной ячейке ∆ ) подбирают таким образом, 

чтобы обеспечить расчетный процесс на границе устойчивости. 

Большое количество численных экспериментов, проведенных для 

разных течений и сеток (с разными значениями ∆ ), позволяет сде-

лать вывод, что при Re 2∆ ≈  обеспечивается устойчивость расчета 

гидродинамических характеристик и это значение находится в обла-

сти срыва устойчивости [6].  

Рассмотренная выше модель отвечает перенесению вихря мас-

штаба ∆  в направлении скорости .V  Однако эта модель не преду-

сматривает условий зарождения вихря. Выражение для турбулентной 

вязкости, которое учитывает условия зарождения турбулентных вих-

рей, было предложено Л. Прандтлем: 

2
т ,ν = ∂ ∂ℓ yV                                         (24) 

где ℓ  — длина перемешивания; y  — переменная, параметризирую-

щая ось, перпендикулярную направлению потока.  

Запись на сетке выражения для эффективной вязкости должна 

учитывать ее тензорный характер, т. е. тот факт, что в горизонтальном 

и вертикальном направлениях вязкости задаются в разных точках: 

2
, , , 1

2
, , 1,

;

,

′ ′ ′ ′ ′−

′ ′ ′ ′ ′−

ν = ν + − ∆

ν = ν + − ∆

ℓ

ℓ

r
i j r i j i j

z
i j z i j i j

w w r

u u z
                               (25) 

где ( ), , 1, 2;′ ′ ′ ′+= +i j i j i jw w w  ( ), , , 1 2.′ ′ ′ ′ += +i j i j i ju u w  

Длины перемешивания полагают пропорциональными сторонам 

расчетной ячейки: = β ∆ℓr r r  и ,= β ∆ℓ z z z  где ,βr  βz  — параметры 

модели.  
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Следовательно, окончательно получаем: 

2
, 1, 1, 1 , , 1 2;′ ′ ′ ′ ′+ + − −ν = ν + β ∆ + − −r

i j r i j i j i j i jr w w w w                (26) 

2
, , 1 1, 1 , 1, 2.′ ′ ′ ′ ′+ − + −ν = ν + β ∆ + − −z

i j z i j i j i j i jz u u u u                 (27) 

Данная модель турбулентной вязкости — двухпараметрическая. 

Параметры βr  и βz  подбирают из условия приближения к порогу  

неустойчивости расчетной схемы.  

Объединяя рассмотренные выше модели турбулентности, полу-

чим трехпараметрическую модель, которая учитывает как перенос 

вихря вдоль потока, так и условия его зарождения. В этом случае вы-

ражение для эффективной вязкости имеет вид 

2Re .∆ ∆ν = ν + ∆ + ∂ ∂ℓef V yV                            (28) 

Расстановка начальных и краевых условий (см. рис. 2). На 

границе AB  имеем следующие граничные условия ( )0; := ri N  

,0 0,′ =iu  
( )1

,0
1

,

∗

′ = i
i

z t
w

s
 ( ),0 2 ,∗=i ip z t  ,0 ;∗θ = θi  

на границе BD  ( )0; := zj N  

, 0,′ =
rN ju  , 0′ =

rN jw  (условие прилипания); 

на границе AC  ( )0; := zj N  

0 , 0′ =ju  (условие непротекания), 

0, 1,′ ′=j jw w  (условие свободного скольжения); 

на границе CD ( )0; := ri N  

, 0,′ =
zi Nu  , , 1 0.′ ′ −− =

z zi N i Nw w  

Граничные условия для давления в узлах, расположенных на гра-

нице [ ] [ ] [ ],BD CD AСΓ = ∪ ∪  определяют с помощью уравнений дви-

жения в комбинации с граничными условиями для скорости и темпе-

ратуры. Они представляют собой условия Неймана / ,Γ∂ ∂ = ψ�
p n  где  

�
n  — нормаль к границе Г, а ψ  — известная величина, получаемая 

проектированием уравнений движения на границу Г. Для температу-
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ры θ на границе [ ] [ ]′Γ = ∪BD AС  применяем условие полной тепло-

изоляции 0.′Γ∂θ ∂ =�
n  

Начальные условия предполагаем однородными и определяемы-

ми стационарным режимом в первом колебательном контуре с сосре-

доточенными параметрами ( )0; , 0; := =r zi N j N  

при 0=n  , 0,′ =n
i ju  , 1 ,′ = ξn

i jw s  , 0,θ =n
i j  ( ), .= ξn

i jp F  

Решение уравнения Пуассона для давления. В рассматриваемой 

явной схеме расщепления (9)−(14) основная трудность заключена  

в решении уравнения Пуассона (12) на каждом временном слое .nt  

При записи схемы расщепления на разнесенной сетке это приводит  

к решению системы конечно-разностных алгебраических уравне- 

ний (19). Существует достаточно большое число методов, как точных, 

так и приближенных, решения этой системы [9, 10]. Рассмотрим метод 

последовательной верхней релаксации (ПВР), предварительно записав 

уравнение (19) в виде  

1, 1, , 1 , 1 ;+ − + −= + + + + Ωn n n n n n n n n n
ij ij i j ij i j ij i j ij i j ijp A p B p C p D p  

( )

( ) ( ) ( )

1

2 2

, 1, , , 1

1 2 3 2

1,5

1 1
1 2 ;

1,5

n
ij

i j i j i j i j

i

i r z

i u i u w w
i r z

−

′ ′ ′ ′− −

 −Ω = − + × 
τ − ∆ ∆  

    × − − − + −    − ∆ ∆ 
ɶ ɶ ɶ ɶ

 

( ) ( )

1

2 2 2

1 2 3 2
;

1,5 1,5

−
 − −= + 

− ∆ − ∆ ∆  

n
ij

i i
A

i r i r z
 

( ) ( )

1

2 2 2

2 2 3 2
;

1,5 1,5

−
 − −= + 

− ∆ − ∆ ∆  

n
ij

i i
B

i r i r z
 

=n
ijC

( )

1

2 2 2

1 2 3 2
.

1,5

−
 −= + 

∆ − ∆ ∆  

n
ij

i
D

z i r z
 

Метод ПВР [10] определяется следующей итерационной схемой 

( )1; :∗=s s  

( ) { }, , 1 , 1 , , 1 ,
1, 1, , 1 , 11 ,− − −

+ − + −= − + + + + + Ωn s n s n n s n n s n n s n n s n
ij p ij p ij i j ij i j ij i j ij i j ijp q p q A p B p C p D p  
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где pq  — параметр релаксации, обусловливающий скорость сходи-

мости итерационного процесса; ∗
s  — номер остановки вычислений. 

Параметр ∗
s  находят из условия 

, , 1

,
max ,

∗ ∗−− ≤ εɶ ɶn s n s
ij ij

i j
p p  

где ε  — заданная точность.  

Полагая 1,pq =  метод ПВР превращается в метод Зейделя [10]. 

При реализации вычислений на ПЭВМ, учитывая их современные 

вычислительные возможности, для численного решения уравнения 

Пуассона (12) более простым в применении является метод простой 

итерации, дающий удовлетворительные решения при существенно 

большем числе итераций ( )1; :∗=s s  

{ }, , 1 , 1 , 1 , 1 , 1
1, 1, , 1 , 1 ,− − − − −

+ − + −= + ω + + + + Ωn s n s n n s n n s n n s n n s n
ij ij p ij i j ij i j ij i j ij i j ijp p A p B p C p D p  

где ωp  — параметр сходимости метода простой итерации. 

Результаты численного моделирования. В рассматриваемой 

дискретно-распределенной модели камеры горения (см. рис. 1) име-

ются два связанных между собой колебательных контура. В зоне 

теплоподвода  из-за  отрицательного  сопротивления и под действием 

 

Рис. 3. Характер деформации предельных циклов и соответствующих им авто- 

колебаний с ростом τ  запаздывания сгорания топлива: 

а — 0;′τ =  б — 0, 25′τ =  — релаксационные колебания; в — 0;′τ =   

г — 0, 002′τ =  — колебания, близкие к гармоническим 
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других механизмов неустойчивости, например запаздывания сгора-

ния топлива, самовозбуждаются автоколебания, моделируемые со-

средоточенной динамической системой. На рис. 3 приведены формы 

автоколебаний вибрационного горения и соответствующие им пре-

дельные циклы, самовозбуждающиеся в зоне теплоподвода (в колеба-

тельном контуре с сосредоточенными параметрами).  

Через соответствующее граничное условие Дирихле нестационар-

ности передаются в колебательный контур с распределенными пара-

метрами (рис. 4), где динамика описывается уравнениями Навье — 

Стокса (3–5).  

 

Рис. 4. Поле скоростей движения продуктов сгорания в распределенной  

части камеры горения на этапе ее заполнения 

 

Заключение. Разработана квазитрехмерная дискретно-распреде- 

ленная математическая модель, которая позволяет выполнить чис-

ленные расчеты гидродинамических процессов, протекающих в ка-

мере горения регенеративного воздухонагревателя доменных печей. 

Численные эксперименты, проведенные на основе полученной мате-

матической модели, позволяют моделировать режим вибрационного 

горения в камере горения воздухонагревателя как динамической сис- 

теме с распределенными параметрами. 
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This work attempts the construction of a quasi-three-dimensional mathematical model 

which describes the vibrating combustion mode in a vertical combustion chamber of a 

regenerative air heater in a blast furnace, considering it as a distributed dynamic system. 
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