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при однонаправленной кристаллизации сплавов 

с учетом движения свободных границ 

© Ю.И. Димитриенко, С.В. Леонтьева 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Рассмотрена задача термоконвекции в зоне расплава при однонаправленной кри-

сталлизации металлического осесимметричного образца с наличием свободной 

границы поверхности (жидкого моста) в условиях микрогравитации. Математи-

ческая задача включает в себя систему уравнений Навье–Стокса в приближении 

Буссинеска с уравнением для массопереноса частиц примесей в жидкости, а также 

уравнения для движения свободной поверхности жидкости. Разработан числен-

ный алгоритм решения задачи, основанный на использовании метода функций вих-

ря и тока, линеаризации и конечно-разностной аппроксимации с применением  

метода переменных направлений для решения разностной системы линейных урав-

нений. Выполнен расчет физических параметров термоконвективных процессов  

в зоне расплава. Показано, что учет движения свободной границы у кристаллизу-

ющейся жидкой фазы приводит к изменению распределения примесей вблизи по-

верхности отверждения, что, в свою очередь, вызывает изменение характерис- 

тик отвержденного материала. 

 

Ключевые слова: направленная кристаллизация, микрогравитация, несжимаемая 

вязкая жидкость, термоконвекция, поверхностное натяжение, свободная поверх-

ность, жидкие мосты, численное моделирование  

 

Введение. Метод направленной кристаллизации является эффек-

тивным технологическим способом получения монокристаллических 

материалов: интерметаллидов, сплавов, в том числе наполненных на-

ночастицами, а также некоторых типов полимерных материалов [1, 2]. 

Общепризнана перспективность применения направленной кристалли-

зации в условиях микрогравитации, достигаемой в условиях орбиталь-

ного полета, параболического полета или иных способов ее созда- 

ния [3–6]. Условия измененных сил гравитации создают возможность 

для получения кристаллов высокого структурного совершенства  

с равномерным или заданным распределением примесей. Задача моде-

лирования процессов термоконвекции жидкого металлического рас-

плава, насыщенного примесями, достаточно хорошо исследована. Из-

вестно, что важную роль в этих процессах играют эффекты сил 

поверхностного натяжения на свободной поверхности, определяемые 

температурным и концентрационным числами Марангони [3–9].  

Однако проблема корректного моделирования процессов конвекции  

в условиях движения свободных жидких мостов с учетом нелинейных 
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эффектов, обусловленных движением свободной поверхности жид-

кости, еще далека от решения. 

Цель настоящей работы — разработать численный алгоритм ре-

шения задачи термоконвекции при однонаправленной кристаллиза-

ции сплава с примесями в условиях микрогравитации с учетом нели-

нейной свободной формы движения границы жидкого моста, а также 

численное моделирование влияния свободной формы границы на 

термоконвективные процессы кристаллизующейся жидкой фазы. 

Разработка математической модели термоконвективных и диф- 

фузионных процессов при однонаправленной кристаллизации. 

Рассмотрим термоконвективное и диффузионное движение несжима-

емой вязкой жидкости (жидкого рас-

плава с растворенными в нем части-

цами примесей) в цилиндрической 

системе координат Or–ϕz, связанной 

с движущимся фронтом кристаллиза-

ции (рис. 1). Термоконвекция обу-

словлена наличием продольного гра-

диента температуры, массовой силой 

гравитации, а также силами поверх-

ностного натяжения жидкости на сво-

бодной части поверхности. Гравита-

ционная сила действует вдоль оси 

направленной кристаллизации. Она 

может быть вынужденной (вызванной 

дополнительными источниками коле-

баний) или пониженной (вызванной 

различными источниками микрогравитации) [1]. Силы поверхностного 

натяжения учитывают эффект Марангони, обусловленный зависимо-

стью коэффициента поверхностного натяжения от температуры и кон-

центрации примесей.  

Математическая формулировка указанной задачи включает в себя 

систему уравнений Навье  Стокса в приближении Буссинеска  

с уравнением для массопереноса частиц примесей в жидкости. При 

этом предполагаются постоянными коэффициенты вязкости, тепло-

проводности, удельной теплоемкости и диффузии в жидкости, а  

в уравнении энергии пренебрегают выделением теплоты за счет вяз-

кой диссипации и работы сил сжатия, а также термо- и бародиффузи-

онными эффектами. С учетом данных предположений уравнения 

движения, переноса теплоты и массы неоднородной несжимаемой 

жидкости можно записать в следующем виде [2, 7]: 

  

Рис. 1. Геометрическая модель тер-

моконвективного движения жидкого 

сплава при однонаправленной кри-

сталлизации со свободной границей 
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( )0

div 0;
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1 ;

;

,

=
∂ µ ′ ′+ ∇ ⊗ = ∆ − ∇ + µ β θ + β − +

∂ ρ ρ


′∂θ λ ′ ′+ ∇θ = ∆θ ∂ ρ
′∂ ′ ′+ ∇ = ∆ ∂

T C gp g Y
t

t c

Y
Y D Y

t

v

v
v v v e g

v
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            (1) 

где 0;′θ = θ − θ  0
′ = −Y Y Y  — отклонения температуры и концентра-

ции частиц от их статических значений, 0 ,θ  0Y   постоянные вели-

чины, исходные значения теммпературы и концентрации примесей, 

причем 0;′ <<Y Y  ρ  — плотность; µ  — коэффициент вязкости; λ  — 

коэффициент теплопроводности; D  — коэффициент диффузии; c  — 

коэффициент удельной теплоемкости при постоянном давлении;  

g  — ускорение свободного падения; ν  — коэффициент микрограви-

тации (коэффициент снижения силы тяжести в условиях квазистати-

ческой невесомости) [1]; βT  и βC  — коэффициенты теплового и кон-

центрационного изменения плотности; ge  — вектор, определяющий 

направление действие силы тяжести; g  — вектор, задающий внеш-

ние ускорения; ∇  — набла-оператор [10, 11]. 

Искомые величины, которые зависят от пространственных коор-

динат и времени t, в системе (1) следующие: вектор скорости ,v  дав-

ление ,p  температура ,′θ  концентрация примеси .′Y  

Граничные условия к системе (1) задаются на поверхностях ΣS  

контакта c твердой фазой (исходный твердый материал и отвержден-

ный материал), на свободной подвижной поверхности жидкости ΣF  

и на оси симметрии задачи (при ее наличии).  

На поверхностях ΣS  задаются условие прилипания, отсутствие 

диффузионного потока, а также температура плавления (или отвер-

ждения): 

ΣS : 0;=v  0;′∇ =Yn  ,θ = θS                              (2) 

где n — вектор нормали к поверхности. 

Условия на оси симметрии: 

0Σ : 0;=nv  0;
∂ =
∂n

v
τ  0;′∇ =Yn  ' 0,∇θ =n                  (3) 

где τ  — касательный вектор.  
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Условия на подвижной поверхности жидкости имеют вид [7]: 

ΣF : ( ) ( ) ;− + = σ ∇ ⋅ + − ⊗ ∇σv R Rpn nσ n n E n n                 (4) 

0;′∇ =Yn  ( ),θ = θF' x  

где E  — метрический тензор; σR  — коэффициент поверхностного 

натяжения, зависящий от температуры и концентрации примесей [1, 

3, 6, 7]; ( )θF x  — заданная температура на свободной поверхности, 

изменяющаяся по координате по определенному закону; vσ  — тен-

зор вязких напряжений жидкости; 

( );= µ ∇ ⊗ + ∇ ⊗ T
vσ v v                                 (5) 

1

1 2

1 1
,−  

∇ = = + 
 

R
R R

n                                  (6) 

где 1,R  2R  — главные радиусы кривизны поверхности [10]; 

0 ,σ σ′ ′σ = σ + β θ + βR R T CY                              (7) 

здесь ,σβ T  σβ C  — коэффициенты теплового и концентрационного 

изменения поверхностного натяжения (коэффициенты Марангони).  
Уравнение движения свободной поверхности жидкости имеет 

вид [11]: 

0,
∂ + ∇ =
∂
F

F
t

v                                         (8) 

где ( , ) 0=F tx  — уравнение свободной поверхности.  

Вектор нормали n  на свободной поверхности ΣF  вычисляется по 

формуле [12]: 

.
∇=
∇

F

F
n                                               (9) 

Начальные условия к системе (1) имеют вид 

0=t : 0;′θ =  0;=Y' Y  0;=v  0( ,0) ( ),=F Fx x               (10) 

где 0 ( )F x  — начальная форма свободной поверхности. 

Постановка осесимметричной задачи. Рассмотрим цилиндри-

ческую систему координат ,− ϕOr z  в которой ось Oz сонаправлена  

с вектором ,ge  определяющим направление действие силы тяжести. 

Примем допущения об отсутствии окружной составляющей у вектора 

ускорения :g  0,ϕ =g  температурное поле ′θ  положим не зависящим 
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от :ϕ  ( , , ),′ ′θ = θ r z t  начальную форму свободной поверхности будем 

считать осесимметричной  

( , , ) ( , ),= = −F F r z t r f z t                               (11)  

где ( , )f z t  — функция формы свободной поверхности. Рассматрива-

емая область движения жидкости имеет вид 

0 ,≤ ≤z L  0 ( , ),≤ ≤r f z t  

где L — высота области.  

Тогда решение задачи (1)–(10) можно искать в осесимметричной 

форме 

, ', , , / / , , ,′θ r zY F v v r z t  0.ϕ =v                          (12) 

Для нахождения этих функций из (1) – (10) получим постановку осе-

симметричной задачи. Для этого введем функции вихря ω  и тока :ψ  

1
;

∂ψ=
∂rv

r z
 

1
;

∂ψ= −
∂zv

r r
 .

∂ ∂ω = −
∂ ∂

r zv v

z r
                  (13) 

Уравнение несжимаемости при этом выполняется тождественно. 

Введем характерные значения функций: 2
0 0 0 0 0 0 0, , , , , ,θ = ρv x t Y p v  

2
0 0 0 ,ψ = x v  а также безразмерные функции: 

0

;= r
r

v
v

v
 

0

;= z
z

v
v

v
 

0

;= r
r

x
 

0

;= z
z

x
 

0

;= t
t

t
 

0

;
θθ =
θ

 
0

;= Y
Y

Y
 

0

;= p
p

p
 0

0

.
ωω = x

v
                                       (14) 

Тогда система уравнений (1) в осесимметричной безразмерной 

форме может быть сведена к следующему виду: 

2

2 2

2 2

1
Eu Gr Gr ;

Re

1
;

( ) Gr Gr ;

1
Eu ;

Pr Re

1
Eu ,

Sc Re

θ

θ

 ∂ω ∂ ω ∂ω ω ∂θ ∂ + + = ∆ω− − −  ∂ ∂ ∂ ∂ ∂ 
∂ ψ ∂ψ ∂ ψ
 − + = ω

∂∂ ∂
 ∂θ ∂∆ = ψ + + ∂ ∂
 ∂θ ∂θ ∂θ+ + = ∆θ ∂ ∂ ∂

∂ ∂ ∂ + + = ∆ ∂ ∂ ∂

r
z Y

Y

r z

r z

v r Y
v

t r r z r rr

r
r rr z

Y
p H

z z

v v
t r z

Y Y Y
v v Y

t r z

     (15) 
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где 
2 2

2 2

1∂ ∂ ∂∆ = + +
∂∂ ∂r rr z

 — оператор Лапласа для осесимметричной 

задачи в безразмерной форме; ( )ψH  — функция, определяемая соот-

ношениями 

2
0 0

( ) ( );
ρψ = ψH H

p x
 ( ) .ψ = ∇ ⊗ ⋅⋅∇ ⊗H v v             (16) 

После подстановки в (16) выражений (13) получаем представле-

ние ( )ψH  через функцию тока 

2 22 2 2 2

2 2 2

2 1 1 1
( ) .

      ∂ ψ ∂ψ ∂ψ ∂ ψ ∂ψ ∂ ψ ∂ ψ  ψ = + − + −            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       

H
r z r z r z r z r rr r z

 

(17) 

В систему уравнений (15) введены следующие безразмерные па-

раметры (критерии): Re  — число Рейнольдса; Eu  — число Эйлера; 

Gr  — число Грасгофа; GrC  — концентрационное число Грасгофа; 

Pr  — число Прандтля; DSc Pr=  — число Шмидта (диффузионное 

число Прандтля); Mn  — число Марангони; MnY  — концентрацион-

ное число Марангони  

0 0Re ;
ρ=

µ
v x

 0

0 0

Eu ;= x

v t
 Pr ;

µ=
λ
c

 DSc Pr ;
µ= =

ρD
 

3 2
0 0

2
Gr ;

β θ ρ=
µ

Tg x
 

3 2
0 0 0

2
Gr ;

β ρ=
µ

C
C

g Y x
 

2

Gr
;

Re
θ =Gr  

2

Gr
;

Re
= C

YGr  

0 0Mn ;σβ θ ρ=
µλ

T x
 0 0Mn .σβ ρ=

µλ
T

Y

Y x
                        (18) 

Введем подвижные координаты, связанные с движением свобод-

ной поверхности:  

;
( , )

′ = r
r

f z t
 .=z' z                                       (19) 

Тогда имеют место следующие выражения для первых производ-

ных в новых координатах 

1
;

∂ω ∂ω=
∂ ∂r f r'

 ;
∂ω ∂ω ∂ω= −
∂ ∂ ∂

zf r'

z z' r' f
 ,
∂ω ∂ω ∂ω= −
∂ ∂ ∂

tf r'

t t r' f
         (20) 
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а также для вторых производных 

2 2

2 2 2

1
;

∂ ω ∂ ω=
∂ ∂r f r'

 

( )
22 2 2 2

2

2 2 2 2 2 2

2
2 ;

 ∂ ω ∂ ω ∂ ω ∂ ω ∂ω= − + − − ∂ ∂ ∂∂ ∂ ∂ 

z z
zz z

f r' f r' r'
ff f

r' z' r'z z' f f r' f
     (21) 

2 2 2

2 2 2

1
.

∂ ω ∂ ω ∂ω ∂ ω= − −
∂ ∂ ∂ ∂ ∂ ∂

z zf f r'

r z f z' r' r' f r' f
 

Производные от функции формы свободной поверхности обозна-

чены: 

( , );
∂=
∂zf f z t
z

 
2

2
( , );

∂=
∂zzf f z t
z

 ( , ).
∂=
∂tf f z t
t

 

В подвижных координатах имеют место также следующие пред-

ставления:  

Eu
∂ω ∂ω ∂ω+ +
∂ ∂ ∂

r
z

v
v

t f r z
= Eu ;

∂ω ∂ω ∂ω+ +
∂ ∂ ∂r zV v
t r z'

 

2 2 2

2 2 2

1
2 ,

∂ ∂ ∂ ∂∆ = + − +
∂ ∂ ∂∂ ∂ r rU W
r' z' r'f r' z'

                   (22) 

где обозначены функции 

1
( );= − −r r t zV v Euf r' f r'

f
 2

2

1 1
2 ;
 = + − 
 

r z zzW f r' ff r'
r'f

 

;= z
r

f r'
U

f
 2

2

1 1
2 ;
 = − − 
 

ɶ
r z zzW f r' ff r'

r'f
 

2

1
.

Re( )
Ω = +rv

r'f r'f
    (23) 

Тогда систему (15) можно записать в подвижных координатах, 

опуская черту над переменными: 

Gr Gr1
Eu ;

Re

θ∂ω ∂ω ∂ω ∂θ ∂+ + = ∆ω − Ωω − −
∂ ∂ ∂ ∂ ∂

Y
r z

Y
V v

t r' z' f r' f r'
 

2 2 2

2 2 2

1
;

∂ ψ ∂ ψ ∂ ψ ∂ψ+ − + = ω
∂ ∂ ∂∂ ∂

ɶ
r rU W r'f

r' z' r'f r' z'
                 (24) 

2 2

2
( )+Gr Gr ;θ

 ∂θ ∂θ ∂ ∂   ∆ = ψ − + −    ∂ ∂ ∂ ∂    
r Y r

Y Y
p H U U

z' r' z' r'r' f
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1 1
Eu ; Eu .

Re Pr Re

∂θ ∂θ ∂θ ∂ ∂ ∂+ + = ∆θ + + = ∆
∂ ∂ ∂ ∂ ∂ ∂r z r z

Y Y Y
V v V v Y

t r' z' t r' z' Sc
 

Систему (24) дополняет уравнение движения свободной поверх-
ности жидкости (8), которое с учетом выражения (11) можно запи-
сать в виде 

.
∂ ∂+ =
∂ ∂z r

f f
v v

t z
                                       (25) 

Компоненты нормали n  связаны с формой свободной поверх- 
ности следующими формулами: 

;= z
r

n

f
n

f
 0;ϕ =n  

1
;= −z

n

n
f

 21 .= +n zf f                   (26) 

Введем касательный вектор к подвижной поверхности, ортого-

нальный к ,n  компоненты которого τ j  имеют вид 

1
;τ =r

nf
 0;ϕτ =  .τ = − z

z

n

f

f
                                 (27) 

Границы области решения в подвижных переменных имеют вид 

{ 0 };Σ = = ∪ =S Sz z z  0 { 0};Σ = =r'  { }.Σ = =F Fr' r  

Граничные условия (2)–(4) в осесимметричной постановке запи-
сывают следующим образом в подвижных координатах: 

на { }:Σ = =S Sz z  

2

2

1
( , ) ( , );

( , ) 0;

1
( , ) ( , ) Gr ( , ) Gr ( , );

Re

( , ) ;

( , ) 0.

θ

 ∂ ψω =
∂

ψ =


∂ ∂ω = + θ +∂ ∂
θ = θ
∂ =
 ∂


S S

S

S S S C S

S S

S

z r' z r'
fr' z

z r'

p
z r' z r z r' Y z r'

z z

z r'

Y
z r'

z

 (28) 

на { }0Σ = =S z  : 

2

2

1
(0, ) (0, );

(0, ) 0;

1
(0, ) (0, ) Gr (0, ) Gr (0, );

Re

(0, ) ;

(0, ) 0.

θ

 ∂ ψω =
∂

ψ =


∂ ∂ω = + θ +∂ ∂
θ = θ
∂ =
 ∂

C

S

r' r
fr' z

r'

p
r' r' r' Y r'

z z

r'

Y
r'

z

 (29) 
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на 0 { ' 0}Σ = =r : 

( ,0) 0, ( ,0) 0;

( ,0) 0; ( ,0) 0; ( ,0) 0.

ω = ψ =

 ∂ ∂θ ∂= = =∂ ∂ ∂

z z

p Y
z z z

r' r' r'

       (30) 

Условия (4) на подвижной поверхности жидкости ΣF  в подвиж-

ных координатах записывают так:  

ΣF : 

1Re ( 1) ( 1) ;
Re Pr Re Pr

;
Re Pr Re Pr

0;

( ).

−  − + σ = θ − + − 
 

 ∂θ ∂
σ τ = +
 ∂τ ∂τ
∂
 =

∂
θ = θ

Y
vij i j

Y
vij i j

F

MnMn
p n n R Y

MnMn Y
n

Y

n

x

      (31) 

Безразмерная средняя кривизна подвижной поверхности (6) для 

осесимметричного случая имеет вид 

2
1

3

1
.− + += z zz

n

f ff
R

ff
                                      (32) 

Нормальная и касательная составляющие вектора вязких напряже-

ний σvij in  (5) для рассматриваемого случая имеют следующий вид: 

2 2 2 ;σ = σ + σ + σvij i j vrr r vzz z vrz r zn n n n n n                        (33) 

( ),σ τ = σ τ + σ τ + σ τ + τvij i j vrr r r vzz z z vrz r z z rn n n n n  

где компоненты тензора вязких напряжений в подвижных координа-

тах выражаются по следующим формулам: 

1
;

∂σ =
∂

r
vrr

v

f r'
 ;

∂ ∂σ = −
∂ ∂

z z z
vzz

v v f r'

z' r' f
 

1 1
.

2

 ∂ ∂ ∂σ = + − ∂ ∂ ∂ 

z r r z
vrz

v v v f r'

f r' z' r' f
                         (34) 

В формулах (31) обозначены производные по нормали и по каса-

тельному направлению к подвижной поверхности  

;
−∂ ∂ ∂= +

∂ ∂ ∂
r z z

z

n n f r'
n

n f r z'
 .

τ − τ∂ ∂ ∂= + τ
∂τ ∂ ∂

r z z
z

f r'

f r z'
       (35) 
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Численный алгоритм решения задачи. Для построения чис-

ленного алгоритма решения задачи (24), (25) с условиями (28)–(31) 

область непрерывного изменения аргументов , ,z' r' t  была заменена 

разностной сеткой: 

,= ∆iz i z  i = 0, 2, …, N1;  

,= ∆jr j r  j = 0, 2, …, N2; 

,= ∆nt n t  n = 0, 1, …, T, 

где ,∆z  ,∆r  ∆t  — шаги по координатам и времени. Значения функ-

ций в узлах разностной сетки обозначим как , ( , , ).θ = θn n
i j i jz r t  

Система уравнений (24) является нелинейной, уравнения для 

функции вихря, температуры и концентрации относятся к параболиче-

скому типу, а уравнения для функции тока и давления — к эллипти- 

ческому. Для численного решения нелинейной задачи были выполне-

ны такие шаги: использован метод линеаризации по временному шагу; 

для уравнений эллиптического типа применено искусственное время, 

вследствие чего вся система уравнений (24) была решена с помощью 

неявной разностной схемы переменных направлений (продольно-

поперечная схема [13, 14], в которой наряду с основными значениями 

искомой сеточной функции n
u  и 1+n

u введено значение 
1

2
+n

u  на про-

межуточном шаге. Переход от временного слоя n к слою n + 1 совер-

шается в два этапа с шагами 0,5∆t : 

1/2
1/2

1 2(1)
1

1 1/2
1/2 1

1 2(2)
1

;

.

+
+

+
+ +

+ +

+

Φ − Φ
= Λ Φ + Λ Φ + Γ

Φ − Φ
= Λ Φ + Λ Φ + Γ

m m
ij ij m m m

ij ij

m

m m
ij ij m m m

ij ij

m

Eu
t

Eu
t

 

Здесь (1)
1 0+τ >m  и (2)

1 0+τ >m  — итерационные параметры, выбираемые 

из условия минимума итераций по Жордану; Φ  — координатный 

столбец неизвестных функций; 1,Λ  2Λ  — диагональные матрицы  

с диагональными элементами 1,αΛ  2, ;αΛ  1, ..., 5.α =  

( , , , , );Φ = ω ψ θp Y  

2

1,1 2 2

1
;

ReRe

∂ ∂ ∂Λ = + − − Ω
∂ ∂∂

r
r

W
V

r' r'f r'
 

2

2,1 2

1
;

Re

∂ ∂Λ = −
∂∂ zv
z'z'

 

2

1,2 2 2

1
;

∂ ∂Λ = +
∂∂
ɶ

rW
r'f r'

 
2

2,2 2
;

∂Λ =
∂z'
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2

1,3 2 2

1
;

∂ ∂Λ = +
∂∂ rW
r'f r'

 
2

2,3 2
;

∂Λ =
∂z'

 

2

1,4 2 2

1 1
;

Re Pr

 ∂ ∂ ∂Λ = + −  ∂ ∂∂ 
r rW V

r' r'f r'
 

2

1,4 2

1
.

Re Pr

∂ ∂Λ = −
∂∂ zv
z'z'

 

Заменяя частные производные, входящие в дифференциальные 

уравнения (26), (28), разностными отношениями, получим двухшаговую 

разностную схему, которая на первом шаге неявна по направлению z и 

явна по направлению r, на втором шаге схема явна по z и неявна по r. 

Численное решение системы (29) с граничными и начальными усло- 

виями осуществлялось методом прогонки. 

Для численного решения уравнения (25) применялась следующая 

двухэтапная разностная схема: 

1/2
1 1 ;

/ 2 2

+
+ −− −+ =

∆ ∆

m m m m
m mi i i i
ziN riN

f f f f
v v

t z
 

1 1/2 1/2 1/2
1 1 .

/ 2 2

+ + + +
+ −− −+ =

∆ ∆

m m m m
m mi i i i
ziN riN

f f f f
v v

t z
 

Результаты численной реализации математической модели.  
В качестве отверждающейся жидкости был рассмотрен никелевый 

жидкий расплав. При расчетах были приняты следующие значения 

параметров:  

4 110 ;− −β =C K  2, 43;β =Y  0 1600 K;θ = θ =m  200 K;∆θ = θ − θ =m s  

0 0,01;=Y  33 10 Па с;−µ = ⋅ ⋅  3 37,8 10 кг/м ;ρ = ⋅  50 Вт (м К);λ = ⋅  

460Дж (кг К);= ⋅с  90,8 10−= ⋅D  м2/с; 3
0 3,6 10 c;= ⋅t  Eu 10;=  

0 0,1 м;= =x R  29,8 м/с ;=g  5
0 10 Па;=P  61,7 10 Н м ;σ = ⋅R  0 0,1.µ =  

Соотношение геометрических размеров расчетной области: ха-

рактерного радиуса к длине по z: / 0,5,=R L  безразмерное уравне- 

ние начальной формы поверхности расплавленной зоны: ( ,0) =f z  

1 0,3sin ( ).
2

π= + z  

На рис. 2–5 приведены расчетные значения параметров жидкости 

для случая, когда граница ΣF  рассматривается как жесткая стенка; 

на рис. 6–10 — для случая, когда граница ΣF  рассматривается как 

свободная поверхность. Все изображенные функции безразмерные. 
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Рис. 2. 3D-визуализация и линии уровня тока ψ  (а, б)  

и вихря ω  (в, г) при условии, что ΣF  — жесткая стенка 
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Рис. 3. 3D-визуализация, линии уровня безразмерных компонент вектора  

скорости rv  (а, б) и zv  (в, г) в области движения расплава при условии,  

что ΣF  — жесткая стенка 
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Рис. 4. 3D-визуализация (а) и линии уровня (б) концентрации Y при условии,  

что ΣF  — жесткая стенка 

 

 

 

Рис. 5. 3D-визуализация (а) линии уровня (б) безразмерной температуры θ   

при условии, что ΣF  — жесткая стенка 
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Рис. 6. 3D-визуализация и линии функций тока ψ  (а, б) и вихря ω  (в, г)  

в области движения жидкого расплава при условии, что ΣF  — подвижная граница 
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Рис. 7. 3D-визуализация и линии уровня безразмерных компонент вектора  

скорости rv  (а, б) и zv  (в, г) в области движения расплава при условии,  

что ΣF  — подвижная граница 
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Рис. 8. 3D-визуализация (а) и линии уровня (б) концентрации Y при условии,  

что ΣF  — подвижная граница 

 

 

 

Рис. 9. 3D-визуализация (а) и линии уровня (б) безразмерной температуры θ   

при условии, что ΣF  — подвижная граница 
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Характер распределения компо-

нент вектора скорости показывает, что 

движение жидкости в рассматривае-

мой области носит циркуляционный 

характер, поскольку компоненты ско-

рости меняют свой знак. На линиях 

уровня, когда радиальная составляю-

щая скорости rv  обращается в ноль, 

компонента zv  достигает своих пико-

вых значений. Полученные режимы 

циркуляционного конвективного те-

чения обусловлены заданным посто-

янным перепадом температуры на бо-

ковой поверхности. При заданной 

геометрии области возникает структура течения, состоящая из двух 

ячеек. Линии функции тока совпадают с траекториями движения 

жидкости и позволяют получить достаточно полную информацию  

о характере течения.  

Примерно на высоте z = 0,5L  радиальный поток разделяется на 

два потока, устремляющихся к торцам вдоль боковой поверхности. 

Вблизи торцов направление движения изменяется, а интенсивность 

падает. Это означает, что в этих местах образуются зоны устойчиво-

сти и основная циркуляция оттесняется от них. У оси симметрии 

встречные потоки имеют максимальную интенсивность. Такое дви-

жение влияет на распределение температуры, что вызывает колеба-

ния ее значений в углах области. В центральной по высоте части слоя 

изотермы практически горизонтальны. На этом участке поток 

направлен по радиальной составляющей, вследствие чего температу-

ра выравнивается. 

При наличии свободной границы возникающее конвективное те-

чение становится более сложным, что сказывается на распределении 

температуры. Если для случая жесткой стенки температурное поле 

внутри рассматриваемой жидкой зоны практически повторяет задан-

ный на боковой поверхности линейный профиль, то для случая сво-

бодной поверхности температурные профили на боковой поверхно-

сти и на оси симметрии различаются значительно. На оси симметрии 

максимум температуры находится не на горячей границе, а внутри 

жидкого моста.  

Изолинии концентрации показывают, что распределение частиц 

примеси по высоте имеет нелинейный характер и практически не из-

меняется в поперечном направлении, максимальные значения дости-

гаются у фронта кристаллизации. Полученная в ходе вычислений 

форма свободной поверхности обусловлена наличием сил гравита-

 

Рис. 10. Изменение формы свобод-

ной поверхности ΣF  во времени: 

1 — t = 0; 2 — t = 1 ч; 3 — t = 2 ч 



Моделирование термоконвективных процессов… 

21 

ции, направленной вдоль оси симметрии тела. Наличие свободной 

формы границы приводит к более быстрому движению частиц кри-

сталлизующейся жидкости.  

Выводы. Рассмотрена модель термоконвективных процессов, ко-

торые имеют место при однонаправленной кристаллизации сплавов  

с примесями в условиях микрогравитации с учетом свободной формы 

движения границы (жидкого моста).  

Предложен алгоритм численного решения задачи с неизвестной 

формой поверхности свободной границы, основанный на преобразо-

вании базовой системы уравнений к неподвижной области с фикси-

рованными границами.  

Для решения преобразованной системы нелинейных уравнений 

применен метод линеаризации по временному шагу в сочетании  

с разностной схемой метода переменных направлений.  

Проведенный сравнительный анализ термоконвективного движе-

ния жидкого расплава в зоне однонаправленной кристаллизации  

показал, что учет формоизменения жидкого моста в процессе нагрева 

заметно влияет на результаты моделирования: при учете свободной 

формы границы скорость движения частиц кристаллизующейся жид-

кости больше, на оси симметрии максимум температуры находится 

не на горячей границе, а внутри жидкого моста, а температурные 

профили на боковой поверхности и на оси симметрии различаются 

сильнее, чем без учета движения свободной поверхности.  
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Modeling of thermal convection processes  

under unidirectional crystallization of alloys  

with liquid bridges motion 

Yu.I. Dimitrienko, S.V. Leontyeva 

Bauman Moscow State Technical University, Moscow, 105005, Russian Federation 

 

The paper considers the problem of thermal convection in the melt zone during unidirec-

tional crystallization of a metal axisymmetric sample with a free surface boundary (liquid 

bridge) under microgravity. The mathematical problem includes a system of Navier-Stokes 

equations in the Boussinesq approximation with an equation for the mass transfer of impu-
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rity particles in a liquid, as well as equations for the motion of the liquid free surface.  

A numerical algorithm for solving the problem based on the vortex and current function 

method, linearization of the problem, and finite-difference approximation using the variable 

direction method to solve the difference system of linear equations is developed. The physi-

cal parameters of thermal convection processes in the melt zone are calculated. It is shown 

that taking into account the motion of the free boundary near the crystallizing liquid phase 

leads to a change in the distribution of impurities near the curing surface, which in turn 

causes a change in the characteristics of the cured material. 

 

Keywords: directional crystallization, microgravity, incompressible viscous liquid, ther-

mal convection, surface tension, free surface, liquid bridges, numerical simulation 
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