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Предложен способ расчета напряженно-деформированного состояния свободных 
тел методом конечных элементов. Приведена реализация предложенного алгоритма 
в двумерной постановке с примерами расчета. 
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Введение. Для задач расчета напряженно-деформированного со-

стояния деталей методом конечных элементов (МКЭ), уравнения ко-
торого получены из вариационного принципа Лагранжа в перемеще-
ниях, часто возникает проблема корректного задания кинематических 
граничных условий. Особенно это важно для расчета деталей и кон-
струкций, в которых приложение кинематических граничных условий 
либо практически невозможно из физического смысла задачи, либо су-
щественно искажает решение. Такие расчетные области назовем «сво-
бодными» телами, для которых желательно исключить влияние кине-
матических граничных условий, и рассматривать конструкцию только 
при действии силовых факторов. 

В статье приведен способ расчета «свободных» тел, примерами ко-
торых являются незакрепленные конструкции, описываемые плос-
кими и пространственными конечно-элементными моделями: лета-
тельные аппараты, плоские модели теплообменников и твэлов 
ядерных реакторов, сечения охлаждаемых лопаток турбин и т.п. На 
рис. 1,а показано сечение охлаждаемой лопатки турбины, расчет тер-
монапряженного состояния которой при заданном поле температур 
(рис. 1,б) сводится к задаче обобщенного плоского деформированного 
состояния. К аналогичной задаче сводится расчет напряженно-дефор-
мированного состояния твэла [1, 2]. Сечение лопатки должно дефор-
мироваться свободно, поэтому задание кинематических граничных 
условий нежелательно. С другой стороны, их отсутствие делает задачу 
с математической точки зрения неопределенной. 
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а) б) 

Рис. 1. Сечение лопатки:  
а – контур; б – распределение температуры 

Общие соотношения. Рассмотрим вариационное соотношение 
Лагранжа 
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где {σ}, {ε} – векторы напряжений и деформаций в каждой точке тела, 
соответственно; {u} – вектор перемещений; Ω – объем тела; 
S – площадь поверхности тела; {FΩ}, {FS} – векторы объемных и по-
верхностных сил, соответственно; δ – обозначает вариацию вектора 
деформаций или перемещений. 

Если задать закон связи напряжений и деформаций [3, 4], то урав-
нение (1) известным способом может быть сведено к конечно-элемент-
ной задаче в перемещениях [5] 

[ ]{ } { }K U F=                                          (2)  

где [K] – глобальная матрица жесткости; {U} – глобальный вектор пе-
ремещений; {F} – вектор узловых нагрузок. 

Векторы объемных и поверхностных сил для точного решения (2) 
должны быть уравновешены (главный вектор и главный момент внеш-
них сил равны нулю). Однако, при численном расчете из-за погрешно-
сти аппроксимации и накопления погрешности вычислений [6] полу-
ченное решение будет отличаться от точного. В частности, это может 
быть связано с тем, что в случае отсутствия кинематических гранич-
ных условий матрица жесткости задачи (2) является положительной, а 
не положительно определенной. Поэтому вектор перемещений будет 
определен с точностью до константы, характеризующей смещение 
тела как жесткого целого. Это смещение с математической точки зре-
ния должно равняться нулю в случае уравновешенной системы внеш-
них сил, однако при отсутствии кинематических связей оно может 
принимать произвольное значение. 
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Существует ряд способов исключения смещения тела как жест-
кого целого при численном расчете. Классический способ заключается 
в задании перемещений, в том числе нулевых, ряду узлов таким обра-
зом, чтобы исключить перемещение тела как жесткого целого. Часто 
для исключения смещения тела как жесткого целого применяют спо-
соб вывешивания контура тела на стержневых элементах (пружинах) 
малой жесткости. Однако, это приводит к большой погрешности. 

В общем случае кинематические связи, наложенные на рассчиты-
ваемую конструкцию, можно описать в виде дифференциального опе-
ратора 

( ) 0L u =                                             (3) 

Воспользуемся методом множителей Лагранжа [7, 8] для кинема-
тических связей (3), и представим (1) в виде: 
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где {λ} – вектор множителей Лагранжа размерности, равной количе-
ству наложенных кинематических условий; {L(u)} – вектор наложен-
ных кинематических условий. 

В этом случае множители Лагранжа входят в решение как неиз-
вестные величины и являются, по сути, силами реакции в узлах зада-
ния кинематических условий. Величины их таковы, чтобы обеспечить 
выполнение заданного кинематического условия. Так как значения 
множителей Лагранжа вычисляются в процессе решения, то система в 
этом смысле является самоуравновешенной, что при корректном зада-
нии кинематических связей исключает перемещение тела как жест-
кого целого при задании любой системы сил. 

Как было сказано выше, в ряде задач наложение кинематических 
связей на некоторый набор узлов не желательно. В настоящей работе 
предложен альтернативный способ. Под смещением тела как жесткого 
целого будем понимать такое линейное смещение {u}C и поворот {Θ}, 
при котором каждая точка тела, кроме перемещений, вызванных дей-
ствующими нагрузками, получает дополнительные смещения, удовле-
творяющие следующим равенствам: 
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{ } { } { } { } [ ] { };
C C

u d u M u r d Iγ γ
Ω Ω

Ω = × Ω = Θ∫ ∫                 (5) 

где γ – плотность тела; {u}C – вектор линейного смещения центра масс 
тела; M – масса тела; {r} – вектор радиус-векторов точек тела; 
[I]С – тензор инерции тела относительно центра масс [3]; {Θ} – вектор 
угла поворота тела. 

Граничные условия (5) являются интегральными операторами для 
вектора перемещений точек тела {u}, поэтому минимизация функцио-
нала с ограничениями (5) является изопериметрической задачей [8]. Ее 
можно свести к задаче Лагранжа, при этом множители Лагранжа будут 
постоянными величинами. 

Таким образом, уравнение Лагранжа (4) примет следующий вид: 
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          (6) 

где {λ1} и {λ2} – векторы множителей Лагранжа размерности 3 для ли-
нейных смещений и углов поворота тела, соответственно. 

В этом случае применение технологии МКЭ приведет к разреша-
ющей системе линейных алгебраических уравнений вида 
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                (7) 

где [Kuλ1] и [Kuλ2] – матрицы связи глобального вектора неизвестных 
{U} с векторами {λ1} и {λ2}, соответственно. 

Более подробно рассмотрим применение предложенного способа 
расчета «свободных» тел на ряде примеров. 

Двумерные задачи. Рассмотрим задачу расчета напряженно-де-
формированного состояния в двумерной постановке. Если предло-
жить, что точки деформированного сечения удовлетворяют условиям 
(5), причем uCx, uCy и Θz равны нулю, то получим следующие условия 
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Ω = Ω = − Ω =∫ ∫ ∫               (8) 

Запишем условия (8) в матричной форме 
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Вводя множители Лагранжа λx, λy и λ Θz для условий (8), вариаци-
онное соотношение (6) примет следующий вид: 
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Переходя к конечно-элементной аппроксимации и считая, что 
плотность и толщина элемента постоянна, заменим интеграл (8) сле-
дующей суммой 
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где N – количество конечных элементов; γe – плотность материала эле-
мента; he – толщина элемента; Se – площадь элемента; [N]e – матрица 
функций форм конечного элемента; {u}e – вектор узловых перемеще-
ний элемента. 

Тогда, введя глобальной вектор {U, λ}T, с учетом аппроксимации 
(11) получим конечно-элементную задачу в виде 
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где [Kuu] – матрица жесткости конструкции; [Kuλ] – матрица связи пе-
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ремещений, компоненты которой для каждого конечного элемента вы-
числяются следующим образом: 
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Для линейного треугольного конечного элемента [5] компоненты 
матрицы [Kuλ]e вычисляются как 
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где i – номер узла; me – масса элемента; Jx, Jy и Jxy – осевые и центро-
бежный моменты инерции элемента относительно центра масс эле-
мента; ai, bi и ci – коэффициенты функции формы треугольного конеч-
ного элемента [5]. 

Следует отметить, что множители Лагранжа λx, λy и λΘz имеют яс-
ный физический смысл, представляя компоненты ускорения от дей-
ствия главного вектора сил и углового ускорения от действия главного 
момента сил, уравновешивающие рассчитываемое тело. В случае рас-
чета тела под действием системы уравновешенных сил, когда главный 
вектор и главный момент сил равны нулю, эти величины должны быть 
равны нулю. Однако за счет погрешности счета они могут отличаться 
от нуля. 

Введение множителей Лагранжа изменяет вид матрицы жесткости 
задачи. Начальная матрица жесткости конструкции (2) имеет редкоза-
полненный и близкий к ленточному вид, где все ненулевые элементы 
при оптимизированной нумерации узлов сосредоточены около глав-
ной диагонали. Поэтому при решении хранится только эта часть мат-
рицы. Это позволяет существенно сократить необходимый объем па-
мяти и время решения получаемой системы линейных алгебраических 
уравнений по сравнению с полностью хранимой квадратной матрицей 
задачи (2). При использовании предложенного алгоритма в матрицу 
задачи на последних позициях добавляются практически полностью 
заполненные строки и столбцы по количеству множителей Лагранжа 
(11), из-за чего матрица хранения становится квадратной. Обойти про-
блему увеличения требуемого объема памяти и времени решения 
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можно, либо используя специальные приемы хранения и индексации 
для ленточного хранения матрицы жесткости совместно с матрицей 
связи перемещений, либо алгоритмы решения разреженных систем 
линейных алгебраических уравнений [9]. 

Алгоритм закрепления «свободного» тела реализован в модуле 
расчета напряженно-деформированного состояния конструкций, рабо-
тающих за пределами упругости при циклическом нагружении [10]. 

Расчет тела под действием уравновешенной системы сил. Те-
стирование предложенного алгоритма проведено при сравнении ре-
зультатов упругого и упругопластического расчета тела прямоуголь-
ного сечения под действием продольной силы, заданной как давление 
на части контура (рис. 2), при задании обычных кинематических гра-
ничных условий и закрепления «свободного» тела. Использовались 
плоский конечный элемент единичной толщины (рис. 2а) и осесим-
метричный конечный элемент [5], осью которого является Ox (рис. 2б). 
Расчетная схема при использовании закрепления «свободного» тела 
одинакова для обоих типов элементов (рис. 2в). Различие только в ко-
личестве закрепленных степеней свободы тела. Для плоского конеч-
ного элемента закрепление произведено по всем трем степеням (8), а 
для осесимметричного элемента – только в направлении оси Ox. 

 
а 

 
б 

 
в 

Рис. 2. Расчетные схемы тела под действием уравновешенной системы сил 
а – плоской конечный элемент; б – осесимметричный конечный элемент; в – за-

крепление «свободного» тела 
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На рис. 3 и в таблице 1 представлены результаты расчетов. В таб-
лице использованы следующие обозначения: m – масса тела; Jz – мо-
мент инерции тела относительно оси Oz; Fx – действующая на тело 
сила; Fxc, Fyc, Mzc – компоненты главного вектора и главного момента 
системы действующих сил относительно центра масс; Δlx, Δly – удли-
нение тела в направлении осей координат; λx, λy, λΘz – компоненты 
вектора множителей Лагранжа; Fλx, Fλy, FλΘz – компоненты уравнове-
шивающей тело системы сил. 

 
а 

 
б 

 
в 

Рис. 3. Начальная (1) и деформированная (2) геометрия тела под действием урав-
новешенной системы сил 

а – кинематические граничные условия; б – плоский конечный элемент и закреп-
ление «свободного» тела; в – закрепление «свободного» телзакрепление «сво-

бодного» тела 

Как видно из приведенных рисунков, при использовании закреп-
ления «свободного» тела сечение деформируется симметрично отно-
сительно центра масс, который лежит в центре сечения для плоского 
конечного элемента и в центре на оси для осесимметричного конеч-
ного элемента. Как видно из результатов, представленных в таблице 1, 
удлинение тела в направлении осей координат для различного вида за-
креплений эквивалентны. Заметим также, что несмотря на уравнове-
шенность системы сил, действующих на тело, множители Лагранжа 
отличны от нуля, что связано с погрешностью аппроксимации и чис-
ленного счета. 
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Таблица 1 

Результаты расчета тела под действием уравновешенной системы сил 

Тип ко-
неч-
ного 
эле-

мента 

Вели-
чины 

Упругий расчет Упругопластический расчет 

Кинематиче-
ские гранич-
ные условия 

Закрепление 
«свободного» 

тела 

Кинематиче-
ские гранич-
ные условия 

Закрепление 
«свободного» 

тела 

П
ло

ск
ий

 

m, кг 8.320e-3 
Jz, кг⋅м2 7.002e-6 

Fx, Н 8000 ±8000 8000 ±8000 
Rxc, Н 8000 0 8000 0 
Ryc, Н 0 0 0 0 

Mzc, Нм 0 0 0 0 
Δlx, м 0.4615e-3 0.4615e-3 0.5654e-3 0.565e-3 
Δly, м -0.0138e-3 -0.0138e-3 -0.0190e-3 -0.019e-3 

λx, м/с2 - 2.144e-08 - -5.894e-08 
λy, м/с2 - 3.839e-09 - 5.503e-09 
λθz, с-2 - -3.103e-03 - -4.238e-03 
Fxb, Н - 1.793e-10 - -4.904e-10 
Fyb, Н - 3.193e-11 - 4.578e-11 

Mzb, Нм - -2.172e-08 - -2.967e-08 

О
се

си
мм

ет
ри

чн
ы

й 

m, кг 0.261 
Fx, Н 251327 ±251327 251327 ±251327 
Rxc, Н 251327 0 251327 0 
Ryc, Н 0 0 0 0 

Mzc, Нм 0 0 0 0 
Δlx, м 0.4615e-3 0.4615e-3 0.5654e-3 0.5654e-3 
Δly, м -0.0138e-3 -0.0138e-3 -0.0190e-3 -0.0190e-3 

λx, м/с2 - 1.855e-08 - -6.346e-08 
Fxb, Н - 1.543e-10 - -5.280e-10 

Тело под действием неуравновешенной системы сил. Тестиро-
вание предложенного алгоритма также проведено при расчете тела 
под действием неуравновешенной системы сил, заданной как давле-
ние на части контура (рис. 4). Масса тела равна 1.182 кг, полярный мо-
мент инерции тела относительно центра масс равен 1.212e-7 кг·м2. В 
первом варианте (рис. 4а) тело закреплено как «свободное». Во втором 
случае (рис. 4б) добавлено линейное ускорение, возникающее под дей-
ствием главного вектора действующих сил. В таблице 2 представлены 
результаты расчета. Значения сил и моментов приведены относи-
тельно центра масс тела. 
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а б 

Рис. 4. Расчет тела под действием неуравновешенной системы сил: 
a – первый вариант; б – второй вариант 

Таблица 2 

Результаты расчета тела под действием неуравновешенной системы сил 

Вари-
ант 

Заданные 
силы 

Заданное 
ускорение 

Главный век-
тор и главный 
момент дей-

ствующих сил 

Множители 
Лагранжа 

Уравновеши-
вающие силы 

и моменты 

1 

Fx, Н 826.9 ax, 
м/с2 - Rx, Н 826.9 λx, 

м/с2 699.4 Fxb, Н -826.9 

Fy, Н 72.6 ay, 
м/с2 - Ry, Н 72.6 λy, 

м/с2 61.4 Fyb, Н -72.6 

Mz, 
Нм 0 εz, с-2 - Mz0, 

Нм -2.0 λθz, с-2 1.65e7 Mzb, 
Нм 2.0 

2 

Fx, Н 826.9 ax, 
м/с2 699.4 Rx, Н 0.0 λx, 

м/с2 1.6e-4 Fxb, Н 1.9e-4 

Fy, Н 72.6 ay, 
м/с2 61.4 Ry, Н 0.0 λy, 

м/с2 -3.8e-5 Fyb, Н 4.0e-5 

Mz, 
Нм 0 εz, с-2 0 Mz0, 

Нм -2.0 λθz, с-2 1.65e7 Mzb, 
Нм 2.0 

 
Как видно из таблицы, значения множителей Лагранжа, отвечаю-

щие за закрепление как «свободного» тела, в первом варианте расчета 
соответствуют значениям линейных ускорений, возникающих под 
действием главного вектора действующих сил во втором варианте. 
При этом в первом варианте уравновешивающие силы и моменты 
равны силам и моментам, действующим на тело. Кроме этого, можно 
видеть, что во втором варианте расчета, несмотря на уравновешен-
ность действующих сил (главный вектор сил равен нулю), из-за по-
грешностей счета множителя Лагранжа отличны от нуля. 

Расчет сечения лопатки. На рис. 5 представлены результаты рас-
чета термонапряженного состояния сечения лопатки (см. рис. 1) с ис-
пользованием предложенного алгоритма. Как видно из представлен-
ных результатов, сечение лопатки деформируется относительно 
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центра масс, причем перемещения узлов заранее предсказать затруд-
нительно. 

  
а б 

  
в г 

Рис. 5. Результаты расчета термонапряженного состояния сечения лопатки: 
а – начальная (1) и деформированная (2) геометрия; б – распределение 

интенсивности напряжений; в – распределение перемещений в направлении оси 
X; г – распределение перемещений в направлении оси Y 

Компоненты вектора множителей Лагранжа {λ} равны, соответ-
ственно, (-3.820e-11м/с2, 1.665e-11м/с2, -1.297e-03с-2), что при массе 
сечения лопатки 0.027кг и полярном моменте инерции 6.571e-5кг⋅м2 
относительно центра масс сечения соответствует уравновешивающей 
системе сил (Fλx, Fλy, Mλθz), приложенной к центру масс и равной (-
1.031e-12Н, 4.496e-13Н, 8.524e-8Нм). В этом примере никакие внеш-
ний силы не приложены, поэтому ненулевые уравновешивающие 
силы возникают только вследствие погрешности счета при численном 
расчете. 

Применение к решению задач пластического деформирова-
ния. Далее приведены примеры использования алгоритма «свобод-
ного» тела к решению задач пластического деформирования. 

Расчет несимметричного тела. Приведен пример расчета напря-
женно-деформированного состояния при упругопластическом дефор-
мировании образца с несимметричным отверстием под действием 
уравновешенной распределенной нагрузки без приложения кинемати-
ческих граничных условий (рис. 6). Задачу можно решить и при ис-
пользовании обычной схемы задания граничных условий: на левой 
стороне – кинематические граничные условия, на правой – силовая 
нагрузка. Но задание кинематических граничных условий на одной 
стороне контура задачи ограничивает ее деформирование, что может 
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оказать влияние на зоны концентрации напряжений при недостаточ-
ной удаленности их от этой стороны контура. Кроме этого, несиммет-
ричность конструкций затрудняет задание кинематических граничных 
условий для получения корректного распределения перемещений и 
деформаций. Использование алгоритма «свободного» тела позволяет 
получить более корректное распределение деформаций как на гра-
нице, так и внутри тела. 

 
а 

 
б 

 
в 

 
г 

Рис. 6. Расчет несимметричного образца:  
а – расчетная схема; б – начальная и деформированная геометрия;                               

в – распределение интенсивности напряжений; г – распределение интенсивности 
пластических деформаций 

Моделирование разгонных испытаний. Моделирование разгон-
ных испытаний модельных дисков (рис. 7) с центральным отверстием 
проведено при постепенном увеличении скорости вращения до мо-
мента разрушения. Классический способ закрепления в точках на осях 
координат возможен только при расчете напряженно-деформирован-
ного состояния на рабочих нагрузках и при наличии осей циклической 
симметрии вдоль координатных осей. При расчете разгонных испыта-
ний такой способ закрепления ограничивает деформацию диска, так 
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как заранее предсказать фрагментирование диска при разрушении за-
труднительно. Применение закрепления модели как «свободного» 
тела позволяет обойти эти проблемы. 

Начальная и деформированная геометрия диска показана на рис. 8. 
Распределение интенсивности напряжений и пластических деформа-
ций для одного из уровней скорости вращения показаны на рис. 9а и 
9б, соответственно. На рис. 10 приведены возможные формы разруше-
ния диска. Здесь темным тоном показаны конечные элементы с повре-
ждаемостью, близкой к единицы, цепочка которых образуют линию 
разрушения [11]. 

 

 
 

 

 
 

Рис. 7. Чертеж модельного диска Рис. 8. Начальная (черные линии) и 
деформированная (красные линии) 

геометрия 

  

 
 

 

 
 

а б 

Рис. 9. Распределение интенсивности напряжений (а) и интенсивности 
пластических деформаций (б) для одного из уровней скорости вращения 
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Рис. 10. Формы разрушения модельного диска при моделировании 
разгонных испытаниях 

Моделирование циклических испытаний. Как было показано 
ранее, задание кинематических граничных условий может изменять 
распределение деформаций в расчетной конструкции. Особенно это 
важно при моделировании циклической испытаний, в котором при 
расчете производится подсчет деформаций за историю нагружения 
[10]. Оценка влияния кинематических граничных условий закрепле-
ния на результаты решения проведено при расчете циклической дол-
говечности [10, 11] образца с надрезом при растяжении-сжатии 
(рис. 11). 

 
Рис. 11. Схема образца 

Образец представляет собой пластину единичной толщины с кон-
центратором напряжений. Моделировалось мягкое нагружение при 
симметричном цикле. Три варианта расчетных схем приведены на рис. 
12. В первом варианте вследствие симметричности конструкции рас-
чет проводился для половины конструкции (рис. 12а). Именно такая 
схема чаще всего используется при расчете подобных задач. Во вто-
ром варианте конструкция рассчитывалась целиком, но по одной сто-
роне приложено рабочая нагрузка, а по другой – кинематические усло-
вия закрепления (рис. 12б). В третьем варианте нагрузка приложена по 
обоим сторонам (рис. 12в), а сама конструкция закреплена как «сво-
бодное» тело. 
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Результаты моделирования для точки в концентраторе напряже-
ний (рис. 11) представлены в таблице 3 для первых пяти полуциклов 
нагружения. Здесь n – номер полуцикла нагружения; σi – интенсив-
ность напряжений в полуцикле, εp – интенсивность пластических де-
формаций в полуцикле, εpsum – накопленная пластическая деформация, 
П – повреждаемость малоцикловой усталости [10-13]. 

 
а 

 
б 

 
в 

Рис. 12. Варианты расчетных схем 

По представленным результатам видно, что результаты статиче-
ского расчета (1-ый полуцикл) практически совпадают. Таким обра-
зом, в этом случае все варианты расчетных схем идентичны. Различия 
начинаются при циклическом расчете. Из-за разницы в деформации 
правой границы для второго и третьего вариантов возникает разница 
в деформации зоны концентратора напряжений, что выливается в раз-
личие интенсивности пластической деформации на каждом цикле 
нагружения и, соответственно, скорости роста повреждаемости в этой 
зоне. Это приводит к тому, что ресурс во втором варианте значительно 
выше. Если сравнивать первый и третий варианты, то общая форма 
деформации образца совпадают, но наличие кинематических гранич-
ных условий вблизи концентратора напряжений приводит к некото-
рому ужесточению расчетной схемы. Это приводит к некоторому 
уменьшению напряжений и деформаций в этой точке, и, соответ-
ственно, увеличению ресурса малоцикловой усталости образца. 
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Таблица 3 

Результаты моделирования образца 

 Вариант 1 Вариант 2 Вариант 3 

n σi, 
МПа 

εp, 
% 

εpsum, 
% П σi, 

МПа 
εp, 
% 

εpsum, 
% П σi, 

МПа 
εp, 
% 

εpsum, 
% П 

1 1038.
7 1.11 1.11 0.066 

1038.
1 1.08 1.08 0.064 

1039.
0 1.13 1.13 0.067 

2 1026.
8 2.25 3.36 0.126 

1026.
5 2.18 3.26 0.122 

1027.
0 2.30 3.43 0.129 

3 1014.
6 2.31 5.67 0.163 

1014.
8 2.24 5.50 0.158 

1014.
8 2.39 5.82 0.167 

4 1006.
6 2.41 8.08 0.192 

1005.
4 2.28 7.78 0.185 

1009.
5 2.42 8.24 0.196 

5 1002.
9 2.44 10.52 0.216 

1003.
6 2.31 10.09 0.207 

1003.
3 2.47 10.71 0.220 

Номер полуцикла 
начала разрушения 157 187 146 

Выводы. Разработан алгоритм расчета напряженно-деформиро-
ванного состояния «свободных» тел под действием произвольной си-
ловой нагрузки, позволяющий отказаться от наложения кинематиче-
ских граничных условий на отдельные узлы расчетной схемы. На 
примере реализации алгоритма в двумерной постановке показана эк-
вивалентность результатов в сравнении с решением при применении 
кинематических граничных условий. Показано, что при расчете 
несимметричных тел предложенный алгоритм позволяет получить бо-
лее корректное решение. 
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