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Задача о продольных и поперечных колебаниях упругого цилиндра, порожденных вы-
сокоскоростным ударом переднего торца о воду, рассмотрена с позиций идентифи-
кации гидродинамических сил по данным измерений оптическими методами парамет-
ров движения противоположного торца. Постановки прямой и обратной задач 
выведены исходя из одномерных теорий Сен-Венана и Тимошенко, что обеспечивает 
гиперболичность определяющих уравнений. Результаты расчетов прямой задачи ко-
нечно-разностным методом сопоставлены с располагаемыми экспериментальными 
зависимостями и демонстрируют довольно точное качественное совпадение. 
 
Ключевые слова: удар о воду, упругие волны, конечно-разностная схема. 

 
Введение. Задачи ударного взаимодействия тел с преградой пред-

ставляют значительный практический интерес и в разных аспектах ис-
следуются теоретическими (преимущественно численными методами 
решения общих уравнений механики сплошных сред с конечными де-
формациями [1-5], формулировки которых приведены, например, в ра-
ботах [6-11]) и экспериментальными методами (например, [12-14]). 

Летательные аппараты (ЛА) при приводнении на поверхность вод-
ной преграды или при проникании в глубину, как правило, испыты-
вают кратковременное, но значительное силовое воздействие, харак-
терное для ударных процессов, на участки корпуса, контактирующие 
с жидкостью. Уровень гидродинамического воздействия на корпус ЛА 
определяется, помимо скорости соударения, геометрической картиной 
взаимодействия: формой и пространственной ориентацией взаимодей-
ствующей с жидкостью части корпуса ЛА. 

В научном плане основной интерес заключается в теоретическом 
и экспериментальном исследовании ударного взаимодействия с жид-
костью тел канонической формы (пластина, диск, клин, конус, шар и 
т.д.) и получении универсальных зависимостей для гидродинамиче-
ских сил в широком диапазоне других параметров, характеризующих 
взаимодействие [15-23]. 
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В ситуациях, когда ставится задача дальнейшего движения ЛА в 
воде [24-28], простейшая форма передней части в виде диска или плос-
кого торца оказывается практически значимой, несмотря на то, что она 
плохо обтекаема. Действительно, при значительной скорости движе-
ния ЛА с кромки плоского торца сходят струи и охватывают движу-
щееся тело каверной. Если при этом не происходит бокового замыва, 
то на тело действует лишь гидродинамическая сила, перпендикуляр-
ная плоскости торца, причем при наличии угла атаки момент гидроди-
намических сил, вызванный несимметричным распределением давле-
ния, стремится этот угол атаки уменьшить (рис. 1). В плоском случае 
это легко видеть из численно-аналитического решения, приведенного 
в работе [29]. 

 
Рис.1. Несимметричное распределение давления на переднем торце цилиндра 

при угле атаки 0δα > , порождающее восстанавливающий момент 0Mδ <  (1 – гра-
ница каверны, 2 – эпюра давления жидкости) 

Результаты экспериментального определения сил, действующих 
на диск при погружении в воду, опубликованные в работах [20, 21], 
были получены в диапазоне скоростей удара до 7,5 м/с и до 3,5 м/с, 
соответственно, т.е. для чисел Маха по отношению к жидкости 

ж
ж

V
a

=M  не выше 0,005. Здесь V  – скорость входа в жидкость, жa  – 
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скорость звука в жидкости (для воды полагаем 1500жa =  м/с). На 
рис. 2а схематично изображена принципиальная картина постановки 
таких испытаний. В подобной же постановке с заменой воды на жид-
кость с пузырьками газа, в которой, как известно [6, 30], скорость 
звука намного ниже, были проведены испытания [22, 23, 31], в кото-
рых моделировался вход в воду с числами Маха до 0,2ж =M  (рис. 2б). 

Примерно для этого же диапазона чисел жM  были проведены ис-
пытания [31-33], в которых модели выстреливались в воду, но измеря-
лись не гидродинамические силы, а параметры возбуждения в модели 
упругих колебаний материала: продольные ускорение свободного 
торца [34] и угол поворота свободного торца [35]. Схематически по-
становка таких экспериментов иллюстрируется на рис. 3а, б. Опреде-
ление ударных нагрузок по таким измерениям можно рассматривать 
математически как обратную задачу теории распространения упругих 
волн в сплошном однородном упругом цилиндрическом стержне. 

 
а б 

 
Рис.2. Принципиальная схема экспериментов при низкоскоростном проника-

нии: 
 а – в воду, б – в жидкость с пузырьками газа 

Проблематике решения обратных задач механики деформируе-
мого твердого тела посвящены, например, работы [36-39]. В данной 
работе обратная задача определения гидродинамических сил рассмат-
ривается в рамках простейшего подхода, состоящего в использовании 
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одномерных теорий распространения продольных и поперечных волн 
в цилиндре. При этом рассматриваются также соответствующие пря-
мые задачи, т.к. ценность решения обратных задач сильно зависит от 
степени адекватности применяемых одномерных моделей. 

 
а б 

Рис.3. Принципиальная схема измерений при высокоскоростном входе в воду:  
а – продольного ускорения свободного торца модели, б – угла поворота сво-

бодного торца модели 

Одномерные теории распространения упругих волн в стерж-
нях. До момента 0t =  контакта ударного торца цилиндрического 
стержня длины L  и радиуса R  с поверхностью жидкости будем счи-
тать, что последняя невозмущена и что стержень движется в недефор-
мированном состоянии равномерно со скоростью 0V  вдоль своей про-
дольной оси. С таким движением стержня свяжем прямоугольную 
систему координат 1 2 3Ox x x , обозначая ее орты как 1e , 2e , 3e . Ось 1Ox  
совмещается с продольной осью стержня, а 1 0x =  и 1x L=  – плоскости 
ударного и свободного торцев соответственно. Пусть, далее, O  – 
точка пересечения оси 1Ox  с невозмущенной поверхностью жидкости, 
а 1 2 3OX X X  – неподвижная прямоугольная система координат с ортами 

1ε
 , 2ε

 , 3ε
 , координатная плоскость 1 3OX X  которой расположена на 

невозмущенной поверхности жидкости, а координатная ось 2OX  
направлена вертикально вверх. Совмещая плоскость 3 3 0X x= =  с плос-
костью стрельбы 1 2Ox x  и полагая 2 1 2sin cose θ ε θ ε=− +

  , где θ  – угол 
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входа, получаем однозначное определение связанной системы коорди-
нат относительно неподвижной (рис.4). 

 
Рис. 4. Определение связанной и неподвижной систем координат 

(1,2 – невозмущенный уровень и деформация свободной поверхности жидко-
сти, 3,4 – поверхность стержня до и в процессе ударного воздействия, 5 – момент 

касания стержнем поверхности жидкости) 

При 0t >  передний торец стержня взаимодействует с жидкостью. 
Пренебрегая вкладом вязкого трения, будем считать, что к ударному 
торцу приложено давление жидкости ( )2 3, ,жp x x t . На свободный то-
рец и боковую поверхность стержня гидродинамические силы в тече-
ние кратковременной ударной стадии проникании стержня не дей-
ствуют. В таком случае линеаризованная задача определения 
деформационного движения материала стержня формулируется сле-
дующим образом [9]: 

,

1 1

2

, 0,
0, 0,

, 0,
0, 0,

т i ij j

i i

ij j i ж

ij j i

u t x
u u t x

n e p e t x
n e t x

ρ σ

σ
σ

= > ∈Ω 
= = = ∈Ω 
= > ∈Σ 
= > ∈Σ 









  

 

,   (1)  

где тρ  – плотность материала стержня, i ix x e=
  , i iu u e=

  , i iu u e=
 



 , i iu u e=
 



  
– радиус-векторы, перемещения, скорости и ускорения его материаль-
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ных частиц, i in n e=
   – вектор единичной внешней нормали к поверхно-

сти стержня, ijσ  – компоненты тензора напряжений, 2 2
2 3r x x= + , 

{ }10 ,x L r RΩ= ≤ ≤ ≤ , { }1 1 0,x r RΣ = = ≤ , { } {2 1 10 ,x L r R xΣ = ≤ ≤ = ∪ =

},L r R= ≤ . В приведенных формулах подразумевается суммирование 
по повторяющимся индексам, причем запятая в индексах означает 

дифференцирование по координатам: ,
ij

ij j
jx

σ
σ

∂
≡
∂

 [9]. 

Осредним уравнения движения задачи (1), интегрируя их по попе-
речному сечению S  стержня. Имеем: 

( ) ( ) ( )22
1

2 3 2 32 2

,
, , i

i i
r R r R

U x t
u x t dx dx u x t dx dx S

t t≤ ≤

∂∂
= =
∂ ∂∫ ∫

 

 , 

( ) ( ) ( ) ( ), 2 3 1,1 2,2 3,3 2 3, , , ,ij j i i i
r R r R

x t dx dx x t x t x t dx dxσ σ σ σ
≤ ≤

 = + + = ∫ ∫
     

( ) ( ) ( )1 1
2 2 3 2

1 1

, ,i i
i i

r R

T x t T x t
n n ds

x x
σ σ

=

∂ ∂
= + + =

∂ ∂∫ . 

При выводе последнего соотношения был использован двумерный 
вариант интегральной формулы Гаусса – Остроградского и учтено от-
сутствие нагрузки на боковой поверхности стержня, для которой 1 0n =

. В результате ( )2 2 3 2 0i i ij j
r R r R

n n ds n dsσ σ σ
= =

+ = =∫ ∫ , где ds  есть диффе-

ренциал длины дуги вдоль контура поперечного сечения стержня. Ве-

личины ( ) ( )1 2 3
1, ,i i

r R

U x t u x t dx dx
S ≤

= ∫
  означают средние смещения дан-

ного поперечного сечения вдоль координатных направлений, а 
величины ( ) ( )1 1 2 3, ,i i

r R

T x t x t dx dxσ
≤

= ∫
  являются компонентами глав-

ного вектора сил напряжений, действующих в этом сечении. 
Симметрия входа стержня в воду относительно плоскости 

стрельбы позволяет принять предположение о симметричном распре-
делении гидродинамической нагрузки. Учитывая это, ограничимся 
рассмотрением проекций уравнений движения на оси 1Ox  и 2Ox . То-
гда имеем из предыдущих соотношений 

,1тSu Nρ = ,          (2)  
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,1тSw Qρ = ,             (3) 
где ( ) ( )1 1 1, ,u x t U x t≡ , ( ) ( )1 2 1, ,w x t U x t≡  – среднее продольное и боко-
вое смещения поперечных сечений стержня, ( ) ( )1 1 1, ,N x t T x t≡ , 

( ) ( )1 2 1, ,Q x t T x t≡  – нормальная и перерезывающая сила в этих сече-
ниях. 

Умножив уравнение движения, записанное в проекции на ось 1,Ox
на координату 2x  и повторяя предыдущие выкладки, будем иметь: 

( ) ( )
2

2 1 2 3 2 1 2 32, ,
r R r R

x u x t dx dx x u x t dx dx
t≤ ≤

∂
=
∂∫ ∫

 

 , 

( ) ( ) ( ){ }2 1 , 2 3 2 11,1 2 12 2 13 12 2 3,2 ,3
,j j

r R r R

x x t dx dx x x x dx dxσ σ σ σ σ
≤ ≤

 = + + − = ∫ ∫


( )2 2 2 3 2
1 1

i i
r R

M MQ x n n ds Q
x x

σ σ
=

∂ ∂
= − + + = −
∂ ∂∫ . 

Здесь ( ) ( )1 2 11 2 3, ,
r R

M x t x x t dx dxσ
≤

= ∫
  – изгибный момент, действу-

ющий в рассматриваемом сечении. 
Отклонению поперечного сечения с координатой 1x  на угол 

( )1,x tψ  вокруг оси ( )1 3xO x , проходящей через центр ( )1x
O  этого сечения  

параллельно оси 3Ox , соответствует распределение осевого перемеще-
ния ( ) ( )1 1 2 3 2 1, , , ,u x x x t x x tψ=− , так что 

( ) 2
2 1 2 3 2 2 3, т

r R r R

x u x t dx dx x dx dx Jψ ψ
≤ ≤

=− =−∫ ∫
 , 

где 
4

2
2 2 3 4т

r R

RJ x dx dx π

≤

= =∫  – момент инерции поперечного сечения 

стержня относительно оси ( )1 3xO x . В общем случае, когда могут проис-
ходить искажения поперечных сечений, примем формулу 

( ) ( )1 2 1 2 3
1, ,
т r R

x t x u x t dx dx
J

ψ
≤

=− ∫
  за определение среднего угла пово-

рота сечения относительно данной оси. В итоге приходим к уравнению 
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1
т т

MJ Q
x

ρ ψ ∂
=− +

∂
 .          (4) 

Уравнения (2) – (4) точны по отношению к исходным соотноше-
ниям (1), но для их замыкания требуется связать обобщенные переме-
щения u , w , ψ  с обобщенными силами N , Q , M . Однако точных 
простых зависимостей в этом случае найти не удается [40]. Простей-
шие приближенные модели для описания продольных и поперечных 
(изгибных) упругих волн в стержнях, соответствующие уравнениям 
гиперболического типа, основаны на соотношениях 

( )1 ,1,N x t ESu=               (5) 

( )1 ,1, тM x t EJ ψ=− ,   (6) 

 ( ) ( )1 ,1,Q x t S wκµ ψ= − .       (7) 

В уравнениях (5) – (7) E , µ  – модули продольной упругости и 
сдвига. 

Формулу (5) можно рассматривать как результат интегрирования 

по поперечному сечению формулы ( ) ( )1
11 11

1

u x
x E

x
σ ε

∂
= =

∂



 , справедли-

вой в условиях статического продольного деформирования стержня 
(величина 11ε  есть компонента тензора малых деформаций, характери-
зующая относительное удлинение вдоль оси стержня). При распро-
странении продольных волн в стержне данное предположение не яв-
ляется точным, но хорошо работает для длинных волн. Уравнения 
(2), (5) приводят к теории Сен-Венана продольных волн в стержне: 

2
,11Eu c u= ,     (8) 

где E
т

Ec
ρ

=  – стержневая скорость продольных волн.  

Соотношение (6) имеет те же основания, что и формула (5), 

именно: ( ) ( ) ( )1 1
1 2 2 3

1 1
т

r R

u x x
M x E x dx dx EJ

x x
ψ

≤

∂ ∂
= =−

∂ ∂∫


. Для вывода 

формулы (7) требуется более глубокий анализ [40,41]. Коэффициент 
κ  служит поправкой к предположениям о распределении напряжений 

в сечении стержня. Полученное в работе [40] выражение ( )6 1
7 6

ν
κ

ν
+

=
+

, 
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где 1
2
Eν
µ

= −  есть коэффициент Пуассона, подкрепляется рассмотре-

нием нетривиальных частных решений. Этим выражением мы и будем 
пользоваться в данной работе. Из уравнений (3), (4), (6), (7) получаем 
в итоге систему уравнений балки Тимошенко: 

( )
( )

,11 ,1

,11 ,1

т т т

т

J EJ S w

w w

ρ ψ ψ κµ ψ

ρ κµ ψ

= + − 


= − 





. 

Легко видеть, что исходная постановка задачи (1) распадается на 
две подсистемы, описывающие независимо друг от друга продольные 
и изгибные колебания стержня. Таким образом, для определения пара-
метров продольных колебаний стержня, вызванных действием гидро-
динамической силы ( ) ( ) ( )2 3 2 3, , 0,ж ж

r R

F t p x x t dx dx N t
≤

= =−∫  на удар-

ный торец, требуется решить задачу 

( ) ( )
( )

2
,11 1

1

,1

,1

, 0, [0; ]
0, 0, [0; ]
0, , 0

, 0, 0

E

ж

u c u t x L
u u t x L
ESu t F t t
u L t t

= > ∈
= = = ∈ 
=− > 
= > 





.  (9) 

Аналогичным образом, для определения параметров изгибных ко-
лебаний стержня, вызванных действием момента гидродинамической 
силы ( ) ( ) ( )2 2 3 2 3, , 0,ж ж

r R

M t x p x x t dx dx M t
≤

= =−∫  на ударный торец, 

требуется решить задачу 

( )
( )

( ) ( )
( ) ( )

( )

,11 ,1 1

,11 ,1 1

1 1 1

1 1 1

,1 ,1 1

,1 ,1 1

, 0, 0

, 0, 0

,0 ,0 0, 0
,0 ,0 0, 0

, , 0, 0
0, , 0,

т т т

т

т ж

J EJ S w t x L

w w t x L

x x x L
w x w x x L
EJ M t w t x

w t x L

ρ ψ ψ κµ ψ

ρ κµ ψ

ψ ψ

ψ ψ
ψ ψ

= + − > ≤ ≤

= − > ≤ ≤

= = ≤ ≤ 
= = ≤ ≤
=− = > = 
= = > = 









.  (10) 

Прямая и обратная задачи для уравнений продольных колеба-
ний. Ввиду возможности определять в эксперименте по ударному 
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входу в воду скорости свободного торца модели, естественно восполь-
зоваться решением задачи (9) для проведения расчетов с предполагае-
мыми зависимостями ( )жF t  и сравнения получаемых результатов с 
экспериментальными кривыми. Более того, естественно рассматри-
вать также и обратную задачу: по измеренным в эксперименте скоро-
стям свободного торца модели определить вызвавшую такое движение 
торца гидродинамическую нагрузку. 

Общее решение уравнения (8) дается формулой Даламбера. Ис-
пользуя ее, легко методом отражений [42] построить аналитическое 
решение задачи (9). Но если пользоваться методом интегральных пре-
образований, можно одновременно решить и обратную задачу. Кроме 
того, попутно получается и мотивировка подхода к рассмотрению об-
ратной задачи и для более трудного случая изгибных колебаний. 

Перейдем в соотношениях (9) к изображениям по Лапласу:  

( ) ( )1 1, ,u x t U x σ , ( ) ( )ж жF t σΦ , 

где, например, ( ) ( )1 1
0

, ,U x u x e dστσ τ τ
∞

−= ∫ . При этом получается урав-

нение: 

( ) ( )
2

,11 1 12, , 0
E

U x U x
c
σσ σ− =  

с граничными условиями 

( ) ( )
,1 0, жU

ES
σ

σ
Φ

=−  и ( ),1 , 0U L σ = . 

 Общее решение этого уравнения имеет вид  

( ) ( ) ( )
1 1

1 1 2, E E

x x
c cU x С e С e
σ σ

σ σ σ
−

= + , 

а для определения коэффициентов ( )1С σ , ( )2С σ  из граничных усло-
вий следуют соотношения  

( )
1 2

ж

E E

С С
c c ES

σσ σ Φ
− =−  и 1 2 0E E

L L
c c

E E

С e С e
c c

σ σσ σ −

− = . 
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Таким образом, для перемещений решение в изображениях имеет вид 

( ) ( )
1 12

1 2,
1

E E E

E

x xL
c c c

ж
L

т E c

e e eU x
c S

e

σ σσ

σ

σ
σ

ρ σ

− −

−

Φ +
=

−

. 

Изображения для скоростей поперечных сечений стержня получа-
ются как ( ) ( ) ( ) ( )1 1 1 1, , , ,v x t u x t sU x s V x s≡ ≡

 . Следовательно, для сме-
щения и скорости свободного торца имеем 

( ) ( )

( ) ( )

2

2

2
, ,

1

2
, .

1

E

E

E

E

L
c

ж
L

т E c

L
c

ж
L

т E c

eU L
c S

e

eV L
c S

e

σ

σ

σ

σ

σ
σ

ρ σ

σ
σ

ρ

−

−

−

−

Φ
=

−

Φ
=

−

,    (11) 

Используя правила обращения для преобразования Лапласа, нахо-
дим соответствующие этим выражениям оригиналы: 

( ) ( )

( ) ( )

2, 2 1 ,

2, 2 1 .

ж
kт E E

ж
kт E E

Lu L t I t k
c S c

Lv L t F t k
c S c

ρ

ρ

∈

∈

 
= − − 

 
 

= − − 
 

∑

∑





,                    (12) 

Здесь суммирование проводится по множеству натуральных чисел 

 , а ( ) ( )
0

t

ж жI t F dτ τ= ∫  есть импульс гидродинамической силы. Заме-

тим, что 0ж жF I≡ ≡  при отрицательных значениях аргумента. 
Пусть теперь ( )измv t  – измеренная в эксперименте скорость сво-

бодного торца, т.е. ( ) ( ), измu L t v t= . В рамках стержневой теории фронт 
возмущения, вызванного началом взаимодействия стержня с жидко-

стью, приходит на свободный торец в момент 
E

Lt
c

= . Это значит, что 

при 0
E

Lt
c

≤ <  имеем ( ) 0измv t ≡ . Это мотивирует введение обозначения 
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( )изм изм
E

Lw t v t
c

 
= + 

 
.   (13) 

Перепишем это соотношение в изображениях 
( ) ( ) ( )( ), изм измV L V v tσ σ=  : 

( ) ( )

( ) ( ) ( )

0

0

.E E E

E

изм изм изм
E

L L L
c c c

изм изм изм
L

c

Lw t W v e d
c

v e d e v e d e V

στ

σ σσ τ
σ τ

σ τ τ

τ τ τ τ σ

∞
−

 ∞ ∞− − 
− 

 
= + = 

 

= = =

∫

∫ ∫






   

 (14) 

Исключив из соотношений (11) и (14) ( )измV σ , находим 

( ) ( )
21 1

2
E

L
c

ж E измc e W
σ

σ ρ σ
− 

Φ = −  
 

.   (15) 

Возвращаясь к оригиналам, получаем решение обратной задачи: 

( ) ( )1 2
2 E изм изм

E

Lp t c w t w t
c

ρ
  

= − +     
, 

где ( )измw t  определяется согласно формуле (13). 
Остается обсудить формулу (15). В задаче (9), являющейся линей-

ной, все соотношения являются однородными, кроме одного, опреде-
ляемого некоторой функцией χ . В нашем случае этим соотношением 
является граничное условие на ударном торце. Следовательно, иско-
мое решение в некотором смысле является пропорциональным функ-
ции χ  (в смысле представления его в виде интеграла Дюамеля – 
свертки данной функции χ  с фундаментальным решением, соответ-
ствующим замене функции χ  на функцию Хевисайда или ее обобщен-
ную производную – дельта-функцию Дирака). В изображениях диф-
ференциальные зависимости переходят в алгебраические, и 
изображения искомого решения и функции χ  оказываются пропорци-
ональными в обычном смысле. Этим обстоятельством обеспечивается 
получение соотношений типа (15). В стержневой теории его удается 
обратить явно, в случае теории Тимошенко для изгибных колебаний 
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такой возможности нет, но обращение преобразования Лапласа можно 
выполнять посредством численных процедур. 

Прямая и обратная задачи для уравнений изгибных колеба-
ний. При несимметричном входе стержня в жидкость (угол входа от-
личен от вертикального) распределение давления жидкости по удар-
ному торцу приводится относительно точки O  к нормальной силе 

( )жF t  и к моменту ( )жM t  вокруг оси 3Ox  (углы атаки и скольжения 
считаются равными нулю). Под действием момента гидродинамиче-
ских сил в материале стержня возбуждаются изгибные колебания в 
плоскости стрельбы 1 2Ox x . В рамках одномерной модели изгибных ко-
лебаний по теории Тимошенко имеем задачу (10). В общем случае ре-
шения данной задачи невозможно представить в замкнутой аналити-
ческой форме и данную систему уравнений приходится решать 
численно. 

Благодаря гиперболическому типу [43], задача (10) корректно по-
ставлена и хорошо интегрируется численно методом конечных разно-

стей. Перепишем систему (10) в безразмерных переменных Ec tt
R

= , 

1xx
R

= , uu
R

= , ww
R

= , LL
R

= , ( )1,M x t R
M

EJ
= , ( )1,Q x t

Q
Sκµ

= . Тогда при 

0t >  и 0 x L< <  требуется найти решение системы уравнений 

2 2

2 2

2 2

2 2

wA
t x x

w wB
t x x

ψ ψ ψ

ψ

∂ ∂ ∂ = + − ∂ ∂ ∂ 


 ∂ ∂ ∂ = −  ∂ ∂ ∂  

,   (16) 

удовлетворяющее начальным условиям 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1

0 1

,0 , ,0

,0 , ,0

x x x x
t
ww x w x x w x
t

ψψ ψ ψ∂ = = ∂
∂ = =
∂ 

   (17) 

и граничным условиям 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

2 2

0, , 0, 0,

, , , ,

wt M t t t Q t
x x

wL t M t L t L t Q t
x x

ψ ψ

ψ ψ

∂ ∂ =− − = ∂ ∂
∂ ∂ =− − =
∂ ∂ 

.       (18) 

Формулы (6), (7) в безразмерных переменных имеют вид 

( ),M x t
x
ψ∂

=−
∂

, ( ), wQ x t
x

ψ∂
= −
∂

. 

Коэффициенты A , B  в уравнениях (16) определяются как 

B
E
κµ

= , 
2

4SRA B B
J

= = , 

поскольку 2S Rπ= , 
4

4
RJ π

= . Введение функций ( )0,1 xψ , ( )0,1w x , 

( )1,2M t , ( )1,2Q t  придает условиям (17), (18) бóльшую общность и 
позволяет проводить детальное тестирование разностной схемы. 

Уравнения (16) аппроксимировались на равномерной сетке по x  и 
t  центральными разностями. При аппроксимации начальных и гра-
ничных условий по необходимости использовались односторонние 
разности, затем, на основании анализа разложений в ряды методом 
[44], выявлялись поправки к разностным аппроксимациям, обеспечи-
вающие точность второго порядка. Результирующая явная трехслой-
ная разностная схема имеет следующий вид [32,45]. Для внутренних 

узлов jx jh= , где 
x

Lh
n

= , 1, 2,.. 1xj n= − , и моментов времени kt kτ= , 

где 1, 2,..k = , решение на следующем временнóм слое 1kt +  вычисляется 
по формулам 

( ) ( )

( ) ( )

2 2
1 1

1 1 1 12

2 2
1 1

1 1 1 12

2 2 2
2

2 2
2

k k k k k k k k k
j j j j j j j j j

k k k k k k k k
j j j j j j j j

A w w h
h h
B Bw w w w w w
h h

τ τψ ψ ψ ψ ψ ψ ψ

τ τ ψ ψ

+ −
+ − + −

+ −
+ − + −


= − + − + + − − 


= − + − + − − 

.(19) 

Начальные условия на слое 0 0t =  вычисляются как 

( )0
0j jxψ ψ= , ( )0

0j jw w x=    (20) 
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во всех 1xn +  узлах jx  ( )0,1,.. xj n= . На предшествующем слое 1t τ− =−  
используются соотношения 

( ) ( ) ( ) ( )

( ) ( ) ( )

22
1 0 0 0

1 02

22
1 0 0 0

1 2

2

2

j j j j j j

j j j j j

d dwx x A x x
dx dx

d w dBw w w x x x
dx dx

ψτψ ψ τψ ψ

ψττ

−

−

  = − + + −   
   


  = − + −    

.   (21) 

Сеточные значения в граничных узлах при 1,2,..k =  вычисляются 
по разностным соотношениям 

( ) ( )

( )

( ) ( )

( )

( )

( )

2
1 1

1 0 0 1 12
1

0 2 2

2 1 1

2
1 1
1 2 12

1
2 2

2 2 1

2
1 1 1

1 0 0 02
1

0 2 2

2 1 1 1

21 2

1
2 2

21 2

1
2 2

21 2

1
2 2

x x x

x

k k k
k

k

k

k k k
n n n k

k
n

k

k k k k

k

k

h hM t

h Ah Q t

h hM t

h Ah Q t

hw w h
Bw

h hhQ t M tB

ψ ψ ψ
τψ

τ

ψ ψ ψ
τψ

τ

ψ ψ
τ

τ

+ −
+

+

+

+ −
− +

+

+

+ − +

+

+

 
+ − + + 

 =
 + +  
 

+ − − + 
 =
 + +  

+ − − −
=

+ − + ( )

( )

( ) ( )

1

2
1 1 1
1 2

1
2 2

2 2 1 2 1

21 2

1
2 2

x x x x

x

k

k k k k
n n n n

k
n

k k

hw w h
Bw

h hhQ t M tB

ψ ψ
τ

τ

+

+ − +
−

+

+ +














  
  
  
  
   


  + − + +  
 = 
  + + +      

(22) 

Примеры расчетов по разностной схеме (19) – (22) представлены 
ниже в сравнении с экспериментальными данными (рис. 5-6) и демон-
стрируют довольно точное качественное совпадение волновых кар-
тин. 

Для решения обратной задачи использование разработанной раз-
ностной схемы проблематично. Действительно, считая зависимость 

( )1M t  искомой, а угол поворота свободного торца известным из экс-

перимента как ( ) ( ), ,экспL t L tψ ψ= , будем иметь вместо соотношений 
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(18), где в нашем случае ( ) ( )1 жM t M t= , ( ) ( )2 1,2 0M t Q t= ≡ , систему 
граничных условий 

( ) ( )

( )

( ) ( )
( ) ( )

0, 0,

, 0

, ,

, эксп

w t t
x

L t
x
w L t L t
x

L t t

ψ

ψ

ψ

ψ ψ

∂ = ∂ 
∂ = ∂ 

∂
= ∂ 
= 

.        (23) 

Легко, однако, видеть, что второе соотношение системы разност-
ных уравнений (22) оказывается достаточным для вычисления значе-
ния ( ) ( )1

1 1,
x

k
n k эксп kL t tψ ψ ψ+

+ +≅ = . Это означает, что три граничных 
условия системы (23), относящиеся к свободному торцу, образуют пе-
реопределенную подсистему. При этом на ударном торце получается 
недостача граничных условий. Хотя, в принципе, это может быть как-
то использовано, но, ввиду отмеченной выше переопределенности 
условий на правой границе, следует ожидать неустойчивости вычис-
лений. Поэтому, чтобы реализовать вычисления с граничными усло-
виями (23), понадобится, как минимум, разрабатывать некоторые ре-
гуляризующие процедуры. 

Другой подход к решению обратной задачи состоит в применении 
метода интегральных преобразований в целях получения зависимости 
изображения ( ) ( )1 1M s M t  искомого момента гидродинамических 

сил от изображения ( ) ( ), ,L s L tψΨ   экспериментально измеряемого 
угла поворота свободного торца цилиндра и в последующем числен-
ном обращении этой зависимости. 

В изображениях по Лапласу вместо уравнений (16) - (18) имеем 
соотношения 

( )
2

2
2

2
2

2

WA s A
x x

WB s W
x x

∂ Ψ ∂
+ = + Ψ∂ ∂ 

 ∂ ∂Ψ − =  ∂ ∂  

,    (24) 
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( ) ( ) ( ) ( )

( ) ( ) ( )

10, , 0, 0,

, 0, , ,

Ws M s s s
x x

WL s L s L s
x x

∂Ψ ∂ =− =Ψ ∂ ∂
∂Ψ ∂ = =Ψ
∂ ∂ 

.     (25) 

Система уравнений (24) является однородной, и ее общее решение 
имеет вид 

( ) ( )

( ) ( )

4

1

4

1

,

,

j

j

k s x
j

j

k s x
j

j

x s C e

W x s D e

=

=

Ψ = 


=


∑

∑
,          (26) 

причем 

2 2
j

j j
j

k B
D C

s k B
=−

−
, 

( ) ( )21 1
1,2 2

161 1
2

sk s B B
s

− −=± + + − − , 

( ) ( )21 1
3,4 2

161 1
2

sk s B B
s

− −=± + − − − . 

В результате подстановки выражений (26) в (25) получаем систему 
линейных уравнений относительно коэффициентов jC : 

( )

( )

4

1
1

4

1

4

2 2
1

4

2 2
1

0

1 0

1 0

j

j

j j
j

k s L
j j

j

j
j j

k L
j

j j

k C M s

k e C

C
s k B

e C
s k B

=

=

=

=

= 



= 


=
−

= − 

∑

∑

∑

∑

, 

решая которую, находим искомую связь между изображениями ( )1M s  
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и ( ) ( ) ( ) ( ), ,Ls
L Ls e L s L t L tψ ψΨ = Ψ + ≡ : 

( ) ( ) ( )1 LM s s s=ϒ Ψ ,        (27) 

где 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 3
1 3

3 1 1 32 2
1 3 2 2 2 2

1 3

2 22 2
2 2 31

1 3 1 32 2 2 2
3 1

3 1 1 32 2
1 3 2 2 2 2

1 3

1
2

.

Ls

Ls

ch k L ch k L
s k k

k sh k L k sh k L
Be k k

s k B s k B

s k Bs k Bk k sh k L sh k L
s k B s k B

k sh k L k sh k L
Be k k

s k B s k B




−
ϒ = +   − −  − −  

 −− + − −  +   − −  − −   

. 

Для нахождения искомого оригинала ( )1M t  требуется численно 
вычислить интеграл 

( ) ( ) ( )1
1

2

c i
st

L
c i

M t s s e ds
iπ

+ ∞

− ∞

= ϒ Ψ∫ ,   (28) 

где c  – положительная постоянная, выбираемая так, чтобы особые 
точки ядра интегрирования оставались слева от прямой Re s c=  ком-
плексной плоскости s . 

Аналогичным образом можно записать формулу обращения для 
( )L sΨ : 

( ) ( ) ( )1
1

1
2

c i
st

L
c i

t s M s e ds
i

ψ
π

+ ∞
−

− ∞

= ϒ∫ .  (29) 

Пользуясь этой формулой, можно вычислять значения угла пово-
рота свободного торца модели независимо от ранее описанного метода 
конечных разностей, что использовалось в работе [45] для тестирова-
ния разностной схемы. Эта формула, не будучи конкурентоспособной 
со схемой (19) - (22) в смысле эффективности, позволяет, однако, про-
извести вычисления для любого отдельно взятого момента времени. 
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Отметим, что вычисления по формуле (28), выполнять намного 
сложнее, чем по внешне схожей с ней формуле (29). Это не удиви-
тельно, поскольку типичным при решении обратных задач является 
применение того или иного способа регуляризации [46]. В случае фор-
мулы (29) функция ( )1 s−ϒ  полюсов в правой полуплоскости не имеет, 

но она имеет нули в полосе 1

40 Re
1

s
B−< <

−
, являющиеся полюсами 

функции ( )sϒ  [45]. Из анализа соотношения (27) видно, что в тех же 
точках у функция ( )L sΨ  имеются нули, компенсирующие особенно-
сти ( )sϒ . К сожалению, функция ( )L sΨ  не может быть известна 
точно, поскольку представляет собой численное изображение по 
Лапласу получаемой из эксперимента, т.е. неточно известной, зависи-
мости ( )L tψ . 

Некоторые результаты. На рис. 5 представлены примеры резуль-
татов регистрации углов поворота свободного, зеркального торца мо-
делей, полученные в испытаниях, проводившихся по схеме рис. 3б [32, 
45]. Соответствующие расчетные зависимости построены на рис. 6 в 
координатах ( ),ξ η  плоскости экрана [45]: 

( ) ( ) ( )
( )

( ) ( )
( )

2 2

2 2

2 2

2sin cos sin , cos ,
sin cos cos 2 ,

cos cos 2 sin 2 ,
sin cos cos 2 ,

э

э

l L t f t L t
L t

l f t L t
L t

ϕ ϕ ψ ψ
ξ

ϕ ϕ ψ

ϕ ϕ ψ
η

ϕ ϕ ψ

 +  =
+ 


+   = + 

.          (30) 

В этих формулах ϕ  – угол между лучом лазера от источника и 
осью канала ствола, эl  – расстояние от точки пересечения этих направ-
лений (точка юстировки) до экрана (рис. 3б), 
( ) ( ) ( ) ( )0 , , tg ,f t V t u L t w L t L tψ= − − . 

Расчеты проводились по формулам (12), (19) – (22), (30) для зави-
симостей ( )жF t , ( )жM t  гидродинамической силы и момента, полу-
ченных в работах [20, 21]. 

Зависимость ( ) ( )
2 3

0

ж

ж

M t
M s

V Rρ π
= , где 0 tg

2
V ts

R
θ= , аппроксимирова-

лась дугами парабол: 
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( )

2
max max

max
max

2
max max

max 01
01 max

2
min min

01 min
01 min

2
min min

min 02
02 min

02

1 , 0

1 ,

1 ,

1 ,

0,

z

z

z

z

z

s sM s s
s

s sM s s s
s s

M s s sM s s s
s s

s sM s s s
s s

s s

  −
 − ≤ < 
   
  −
 − ≤ < −   

=   − − − ≤ < −   
  − − − ≤ < −   

≥





























,   (31) 

 
Рис. 5. Примеры осциллограмм регистрации изгибных колебаний свободного 

торца модели ( 0V  в м/с, 60θ =  ) 
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Рис. 6. Расчетные зависимости углов поворота свободного торца модели при 

изгибных колебаниях, вызванных прониканием в воду 
(1 – 0 185, 4V L= = ; 2 – 0 273, 4V L= = ; 3 – 0 192, 8V L= = ) 

Коэффициенты зависимости (31) подбирались в соответствии с ре-
зультатами работы [21]. Данные, соответствующие углу входа 60 ,θ = 

приведены в табл. 1. 

Таблица 1 

Значения параметров зависимости ( )

zM s  для 60θ =   

Параметр Значение 
max
zM  0,366 

maxs  0,310 

01s  0,620 
min
zM  0,186 

mins  0,745 

02s  0,900 

 
При сравнении расчетных и экспериментальных зависимостей об-

наруживается их очевидное качественное сходство. В количественном 
отношении имеются расхождения, предполагающие дополнительные 
исследования по ряду направлений. В частности, данные для зависи-
мостей ( )жF t , ( )жM t  экстраполировались со значений 0,005жM   
на значения 0,2жM  . Но тогда важно оценить степень погрешности 
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этой экстраполяции. Одним из возможных путей получения данных 
оценок является решение обратной задачи, например, в постановке 
(28). 
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Mathematical methods of identification of hydrodynamic 
loads at impact on water based on one-dimensional theories 

of elastic wave propagation in rods 
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The problem of longitudinal and transversal oscillations of elastic cylinder generated by 
high velocity impact of the forward end on the water surface is considered from the point 
of the identification of hydrodynamic forces by treating optical measuring data of the op-
posite end motions. The statements of the direct and reverse problems are derived, based 
on the one-dimensional theories of Saint-Venan and Timoshenko, which provides the hy-
perbolicity of the governing equations. The results of the direct problem calculations by 
the finite-difference method are compared with the available experimental traces and show 
rather accurate qualitative coincidence. 
 
Keywords:  water impact, elastic waves, finite-difference scheme. 
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