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Аналитическая модель колебаний ролика, движущегося вдоль твердой… 
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Рассмотрена модель нормальных колебаний ролика, движущегося вдоль поверхности 
с постоянной скоростью при наличии жидкого слоя смазки. Распределение давления 
вдоль смазочного слоя получено в результате интегрирования уравнения Рейнольдса 
с учетом как тангенциальной, так и нормальной скорости ролика относительно 
опорной поверхности. Определен коэффициент демпфирования смазочного слоя, яв-
ляющийся коэффициентом пропорциональности между усилением несущей способно-
сти и величиной нормальной скорости. После перехода к безразмерным переменным 
задача сводится к решению обыкновенного дифференциального уравнения второго 
порядка с малым параметром при старшей производной.  Построено аналитическое 
решение данного уравнения методом асимптотического разложения по сингулярному 
малому параметру. Решение содержит как регулярные члены разложения по степе-
ням малого параметра, так и погранслойные функции, быстро затухающие с тече-
нием времени. Характерное время затухания этих функций пропорционально малому 
параметру.  На основе полученного решения, рассмотрен переходный процесс к ста-
ционарному решению при резком увеличении внешней нагрузки. Характерной особен-
ностью данного процесса является резкое увеличение пика давления сразу после 
скачка нагрузки, который затем плавно релаксирует к новому стационарному значе-
нию, соответствующему возросшему значению нагрузки. 
 
Ключевые слова: смазочный слой, гидродинамическая смазка, колебания ролика, 
асимптотическое разложение. 

 
Введение. Стационарная гидродинамическая задача контакта 

ролика с  пластиной при наличии смазочного слоя, разделяющего 
поверхности, рассматривалась во многих публикациях [1-6] и 
достаточно хорошо изучена. Впервые эта задача была рассмотрена Ка-
пицей П. Л., который получил аналитическое стационарное решение 
для распределения давления в слое при отсутствии деформаций по-
верхностей контакта [4]. В работах [6-7] рассмотрены асимптотиче-
ские методы решения стационарной задачи с учетом прогиба опорной 
поверхности в случае очень больших нагрузок.  В то же время 
нестационарные аспекты гидродинамического контакта ролика с 
опорной поверхностью остаются в значительной мере мало исследо-
ванными [8-9]. Эта тема важна и актуальна, так как именно 
нестационарный контакт свойственен роликоподшипникам, 
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работающим при переменных нагрузках. При такой работе 
подшипников происходят быстрые изменения зазоров между 
контактирующими телами, которые приводят к резкому росту 
пиковых значений давления в смазочном слое. 

В данной работе рассматривается асимптотический 
аналитический метод решения нестационарной задачи 
гидродинамического контакта ролика с жесткой поверхностью, 
основанный на разложении по сингулярному малому параметру при 
старшей производной [10, 11].  

Схема контактного взаимодействия цилиндрического ролика с 
твердой поверхностью, покрытой слоем смазочного материала, 
представлена на рис. 1.   

 

 
Рис. 1. Схема расположения ролика и слоя жидкого смазочного материала 

Расчет давления в смазочном слое. Рассмотрим 
идеализированную модель контакта ролика с поверхностью при 
постоянном коэффициенте вязкости в смазочном слое [12, 13]. В этом 
случае  распределение давления определяется из уравнения 
Рейнольдса: 

                    3 26P h hh V
x x x V t

µ∂ ∂ ∂ ∂   = +   ∂ ∂ ∂ ∂   
.   (1) 

где P – давление в смазочном слое, V – тангенциальная скорость 
ролика относительно поверхности, µ - динамическая вязкость масла 
при нормальном давлении, h – толщина смазочного слоя, зависящая от 
деформации поверхностей. Ось x ориентирована вдоль поверхности 
контакта, как показано на рис.1. Здесь используется система отсчета, 
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в которой   ролик имеет нулевую тангенциальную скорость, а 
поверхность, соответственно, движется в направлении X.  

В предположении, что площадка контакта цилиндра и плоскости 
мала по сравнению с радиусом кривизны R, имеем следующее 
выражение для толщины слоя смазочного материала [2]:  

( )2( ) / 2m mh h x x R= + − ,     (2) 

где mh – минимальная толщина смазочного слоя, mx – координата 
точки минимального зазора. 

Граничные условия в рассматриваемом случае имеют следующий 
вид [2]:  

         ( ) ( ) ( )1 2 2 0dPP x P x x
dx

= = = ,    (3) 

где 1x    и   2x  – входная и выходная границы смазочного слоя.  
Для удобства решения задачи вводим безразмерные переменные: 

,/)(~ Rhxxx mm−=    ( ),6/5.1 RVPhq m µ=      
m

y

h
R

V
V

=υ .   (4) 

Используя (4), преобразуем исходное уравнение Рейнольдса (1) к 
более простому виду: 

                                      ( ) ( )
υ+

∂
∂

=







∂
∂

∂
∂ 2~

~
~

~
~

3

x
xH

x
qxH

x
,   

  (5) 
( ) .2/~1~ 2xxH +=  

Положения входной и выходной границ будем характеризовать 
безразмерными параметрами a и c .  Значение параметра a зависит от 
количества смазки. В случае обильной смазки полагаем −∞=a  [2, 3, 
14]. 

Интегрируя уравнение (5) и используя нулевое граничное условие 
(3) для производной функции давления при cx = , получаем 
дифференциальное уравнение первого порядка: 

( ) ( )
( ) ( )
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( ) ( )3232

22
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x
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.  (6) 
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Решение уравнения (6) зависит от безразмерного параметра υ, 
который связан с нормальной скоростью перемещения ролика. 
Интегрируя уравнение (6) для различных значений υ, находим 
распределение давления в смазочном слое с учетом нормальной 
скорости ролика (рис. 2). 
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Рис. 2. Безразмерное распределение давления в смазочном слое при разных υ; 

1) υ = +0,1;  2) υ = +0,05;  3) υ = 0;  4) υ = -0,05;  5) υ = -0,1 

Определение коэффициента демпфирования смазочного слоя. 
По найденным распределениям давления определяем значения 
несущей способности, являющейся функцией параметра υ 

∫ υ=υ
c

a

dxxqW ),()(' ,     (8)
          

Согласно формуле (7), давление линейно зависит от параметра υ, 
поэтому несущую способность также представим в виде линейной 
функции следующего вида 

υ+= AWW '
0' ,      (9) 
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где постоянные коэффициенты  '
0W  и A равны 0,401 и 1,125, 

соответственно. 
Для перехода к размерному виду используем зависимость: 

'
0

6

m

VRW W
h
µ

= ,     (10) 

С учетом соотношений (4) и (10), преобразуем выражение (9) к 
размерному виду: 

y
mm

V
h
RA

h
VRWW 2/3

2/3

0
66 µ

+
µ′=  ,         (11) 

Здесь первое слагаемое выражает зависимость стационарной несу-
щей способности от зазора при нулевой нормальной скорости, а вто-
рое слагаемое учитывает влияние нормальной компоненты скорости. 
Коэффициент перед скоростью будем называть коэффициентом демп-
фирования λ: 

2/3

2/36

mh
RA µ

=λ  ,      (12) 

Исследования нестационарного процесса. Для исследования 
нестационарного процесса запишем уравнение движения ролика по 
нормали к поверхности: 

FhW
dt

dhh
dt

hdm m
m

m
m −=−+ )()( 02

2

λ ,        (13) 

где: m – масса ролика, F – внешняя нагрузка.  
С учетом зависимостей (11) и (12) уравнение (13) принимает 

следующий вид:                             

F
h
VRW

dt
dh

h
RA

dt
hdm

m

m

m

m −=
µ

−
µ

+
66 '

02/3

2/3

2

2

,   (14) 

Полагая равными нулю производные по времени, определяем 
равновесное значение зазора: 

F
VRW

h
'

0
0

6µ
= ,                 (15) 
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Принимая h0 в качестве базового зазора, вводим безразмерные 
переменные: 

0'hhhm = ,   0'ttt = ,  '
0

0
0 VW

RhA
t = ,   (16) 

Используя нормировки (16), приводим уравнение динамики к 
безразмерному виду: 

01
'

1'
'
1' 2/3 =+−+ε

h
h

h
h  , 

 (17) 

FRA
WmV

2

2'
0

2

  =ε . 

Уравнение (17) определяет зависимость зазора от времени в 
процессе установления стационарного режима. Характерное время 
переходного процесса определяется параметром t0.  

Зададим начальные условия при t = 0. 

.0)0(,/)0( *
00 =≡= hhhhh m

                 (18) 

Так как параметр ε при старшей производной является малым, то 
уравнение называется «жестким» [15] и его решение может 
приближенно представлено в виде асимптотического разложения по 
сингулярному малому параметру [8, 9, 16]: 

,/'),,(~),'(' ε=τετ+ε= ththh  

где первое слагаемое  

...)'(...)'()'(),'( 10 +ε++ε+=ε thththth k
k  

является регулярной частью асимптотики, а второе слагаемое   

...)(~...)(~)(~),(~
10 +τε++τε+τ=ετ k

k hhhh  

представляет собой сингулярную часть асимптотики, называемую 
также в литературе погранслойной асимптотикой.  На пограничные 
функции накладываются дополнительные граничные условия 
затухания  
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.0)(~, →τ∞→τ kh      (19) 

Для первых членов асимптотики имеем выражения: 











ε+τ++τ
ε

=

τε+ε+τ+=

τε+τε+ε+=

)()(~)()(~1'
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







 .   (20) 

Уравнения на функции регулярной и погранслойной частей 
асимптотики можно получить путем подстановки выражения (20) в 
уравнение колебаний (17) и группировки отдельно регулярных и по-
гранслойных членов по степеням малого параметра. Полагая равными 
нулю сгруппированные при степенях малого параметра выражения, 
получаем следующую систему уравнений                                       

01
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11 0
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hh
,              (21) 
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Интегрируя уравнение (21), получаем: 

2

*
0

*
0

*
0

*
0

0

1
1

1

1
1

1

)'(




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,             (25) 

Функция (25) удовлетворяет начальному условию h(0), но дает 
ненулевую начальную скорость: 
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( ) 2/3*
0*

0
0 11)0( h

h
h 








−= .     (26) 

Для компенсации этой скорости далее вводится погранслойное 
решение. 

Далее переходим к определению второго члена регулярной части 
асимптотики. Для этого преобразуем уравнение (22) к виду: 

012/3
0

012/5
0

12
0

11
2
31 hh

h
hh

h
h

h
 =−+− .   (27) 

где: 

( ) 000 1 hhh −= .     (28) 

Подставляя (28) в (27) и выполняя алгебраические 
преобразования, получаем: 

( ) 2/3
0010

0
1 13

2
1 hhhh
h

h  −=−+ .       (29) 

Введем замену: 

0

2
0

0
0

0
00
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10

0

11
1 2

1,
'' hd

hdh
hd
hdhh

hd
hd

dt
hd

hd
hd
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





 ===== .  (30) 

Подставляя (30) в (29), получим следующее выражение:  

( ) 2/3
0
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2
02/3

00
0

0
10

0

0
0

1

2
113

2
1 h

hd
hdhh

hd
hdhh
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
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Следовательно: 

( )( )00
2

0
0

211 hhh
hd
d

−−= .    (32) 

Выражение (31) с учетом (32) и примет вид: 
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1 211
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11 hhhhh
h

hh
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−−−=−+− . (33) 
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Разделив уравнение (33) на коэффициент при старшей 
производной, получим дифференциальное уравнение следующего 
вида: 
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( ) ( ) 001
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1 21
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1
13

2
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hhd
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−
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+ .     (34) 

Общим решением уравнения (34) является функция: 
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Преобразуем подынтегральное выражение: 

( )
( )

( )[ ]












−

−
=−=

=



 −+=








−
−=

−
−

− ∫ ∫

*
0

*
0

00

0

)1(

)1(
ln1ln

)1ln(ln
2
1

1
1

2
1

1
13

2
1

0

*
0

0

*
0

0

*
0

0

*
0

hh

hh
ss

ssds
ss

ds
sh

s

h

h

h

h

h

h

h

h
    (36) 

Тогда уравнение (35) с учетом (36) примет вид: 

000*
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01 )1()(

)1(

)1(
)( hhhG

hh

hh
hGh −=

−

−
= ,   (37) 

где G – неизвестная функция, определяющаяся интегрированием 
следующего уравнения: 
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Вычисляя интеграл, находим: 
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В подынтегральном выражении второго слагаемого уравнения 
(39) применяем замену переменных su =  и выполняем 
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алгебраические преобразования  

∫∫∫∫∫ −
−

−
+

=
−

=
−

dudu
u

du
u

du
u

uds
s

s 2
1

1
1

1
1

2
1 2

2

.         (40) 

Интегрируя (40) и производя обратную замену переменных, получим 
выражение: 

( )3/2 03/2 * *
0 0 0 0 0

0

*
0

0*
0

12 2 1( )
3 3 2 1

11 .
2 1

h
G h h h h h Ln

h

h
Ln C

h

+
= − + + − − +

−

+
+ +

−

      (41)    

С учетом уравнения (41) уравнение (37) примет вид: 

( ) ( )3/23/2 * *
1 0 0 0 0 0 0

*
0 0

0*
0 0

2 21
3 3

1 11 1 .
2 21 1

h h h h h h h

h h
Ln Ln C

h h

= − − + + − −


+ +
− + +
− − 

         (42) 

Далее интегрируя уравнение (23) с учетом условия затухания при τ → 
∞, получаем выражение  

 ))/(exp(
~

2/3*
01

1 hC
d
hd

τ−=
τ

.    (43) 

Постоянная интегрирования С1 определяется из условия нулевой 
начальной скорости для полного решения, представляющего собой 
сумму регулярной и погранслойной асимптотик. Так как первый член 
регулярной асимптотики дает ненулевое начальное значение скорости 

2/3*
0*

0

0 )(11 h
hdt

hd








−= ,    (44) 

то подбираем постоянную С1 таким образом, чтобы погранслойное 
решение компенсировало значение (26) при τ = 0 

58 
 



Аналитическая модель колебаний ролика, движущегося вдоль твердой… 

2/3*
0*

0
1 )(11 h

h
C 








−=  .    (45) 

Подставляя найденное значение в выражение (44) и повторно 
интегрируя, находим выражение погранслойной части асимптотики 

 ( )( ) 22/3*
0

2*
0

*
01 )(

exp1~ C
h

hhh +






 τ
−−−= .  (46) 

Константа C2 подбирается таким образом, чтобы решение 
удовлетворяло нулевому граничному условию при τ  → ∞ ( С2=0).  

Найденная погранслойная функция дает ненулевое возмущение 
порядка ε  в начальный момент времени, которое можно 
скомпенсировать подбором постоянной интегрирования C0 в 
выражении второго члена регулярной асимптотики.    

( ) ( )*
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*
0

2/3*
0

000 1
1)(

)()(1
h
hh

ththС
−

−
−= .       (47) 

В результате итоговое выражение принимает вид: 
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
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− − 

−
+ −

−

   

      

(48) 

Найденная регулярная часть асимптотики дает ненулевую началь-
ную скорость порядка ε, для компенсации которой вводится по-
гранслойная функция второго порядка. Для определения этой функ-
ции интегрируем уравнение (24) с условием затухания τ → ∞ и 
получаем выражение:   
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где: 
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Постоянная интегрирования C3 определяется из условия нулевой 
начальной скорости : 

0)0(~
)0( 2
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τ

+
d

hdh .    (51) 

где:  
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тогда: 
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Интегрируя уравнение (49) получим выражение погранслойной 
функции второго порядка: 
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Найденная функция полностью удовлетворяет условию нулевой 
начальной скорости и дает очень малое возмущение начального усло-
вия порядка ε2. В принципе, его можно скомпенсировать учетом даль-
нейшего регулярного члена асимптотики порядка ε2 . 

После определения всех функций регулярной и погранслойной 
частей асимптотики уравнения (20), построим график зависимости 
зазора от времени для различных начальных значений  (рис. 3).  

 

 
Рис. 3. Зависимость зазора от времени при ε = 0.01 для различных начальных 

условий; 1) h'(0) = 2;   2) h'(0) = 1.7;   3) h'(0) = 1.4 

Рис. 3 показывает, что после любого внезапного скачка нагрузки, 
который характеризуется безразмерным параметром h'(0), величина 
зазора стремится к новому равновесному значению.  При этом 
скорость изменения зазора тем больше, чем больше начальное 
отклонение зазора от равновесного значения. На рис. 4 представлен 
график изменения относительной скорости сближения поверхностей 
между контактирующими телами со временем  для начального 
условия h'(0) = 2.    
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Рис. 4. Относительная скорость изменения зазора при начальном условии h'(0) 

= 2 для различных значений малого параметра; 
1) ε = 0,04;  2) ε = 0,02;  3) ε = 0,01;  4) ε = 0,005 

 
Рис. 4 показывает, что увеличение параметра ε приводит к более 

плавному изменению вертикальной скорости (dh’/dt’). При этом для 
очень малых значений ε скорость изменения зазора возрастает 
практически мгновенно, что в свою очередь вызывает резкий и 
большой скачок давления.  

Зная зависимость зазора от времени, построим график изменения 
максимума давления (рис. 5).    

     

 
Рис. 5. Зависимость максимума давления от времени; 

1) ε = 0,04;  2) ε = 0,02;  3) ε = 0,01;  4) ε = 0,005 

Из рис. 5 видно, что процесс установления можно 
охарактеризовать двумя временными интервалами. На первом 
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интервале отмечается очень быстрый рост давления. Амплитуда и 
длительность роста давления определяется параметром ε. Чем меньше 
малый параметр ε, тем быстрее увеличивается со временем давление в 
смазочном слое. На втором временном интервале происходит процесс 
плавного спада давления к стационарному значению, 
соответствующему установившемуся состоянию смазочного слоя при 
постоянной нагрузке. На рис. 6 представлен график нелинейной 
зависимости пикового значения  давления от величины начального 
зазора, отнесенного к равновесному значению. Данный график 
показывает, что чем больше малый параметр ε и чем больше 
отклонение он равновесного зазора, тем сильнее проявляется 
нелинейность увеличения пикового давления.  Величина hm/h0 обратно 
пропорциональна скачку внешней нагрузки (отношению 
действующих сил F1/F0).  

Рис. 5 и 6 показывают, насколько важно учитывать 
нестационарные переходные процессы в узлах трения. Например, при 
медленном (квазистационарном) увеличении нагрузки в 2 раза 
максимальное по слою давление увеличивается в 2,2 раза. Однако 
после внезапного скачка нагрузки в 2 раза во время переходного 
процесса максимальное по слою давление кратковременно возрастает 
в 13 раз. Такой резкий скачок давления в смазочном слое между 
контактирующими поверхностями критически сказывается на ресурсе 
всего узла трения.  

 

 
Рис. 6. Влияние начального условия на изменение пика давления для 

различных ε; 
1) ε = 0,04;  2) ε = 0,02;  3) ε = 0,01;  4) ε = 0,005 

 Заключение. Построено асимптотическое аналитическое 
решение задачи нестационарного контактного взаимодействия ролика 
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с твердой поверхностью при наличии смазочного слоя в зоне контакта. 
Показано, что процесс установления решения после резкого скачка 
нагрузки характеризуется двумя временными масштабами. Первый – 
определяет резкий рост максимума давления сразу после скачка 
нагрузки. Второй – отражает процесс плавной релаксации давления к 
стационарному значению, соответствующему возросшему значению 
нагрузки. Полученные результаты обосновывают важность учета 
нестационарных переходных процессов в узлах трения при их проек-
тировании и разработке математических моделей [17,18]. Например, в 
случае внезапного скачка нагрузки в 2 раза максимальное по слою 
давление во время переходного процесса кратковременно возрастает 
более чем на порядок. В то же время, при аналогичном медленном уве-
личении нагрузки максимум давления возрастет лишь вдвое. Такие 
значительные скачки давления, возникающие в переходных нестацио-
нарных процессах, могут вызывать преждевременный износ узла 
трения.  
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  Analytical model of oscillations of the roller moving along 
a surface in a hydrodynamic lubrication regime 
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This article deals with the model of normal oscillations of the roller moving along the 
surface with a constant velocity in a presence of a liquid lubrication layer. Pressure dis-
tribution along the lubrication layer is obtained as a result of integration of the Reynolds 
equation taking into account both tangential and normal velocities of the roller with re-
spect to the surface.  A damping coefficient is determined as that of proportionality between 
the normal velocity and corresponding variation of the carrying capacity. After special 
normalizations, the problem is reduced to the stiff ordinary differential equation with small 
parameter multiplied on the highest order derivative term. For this equation, analytical 
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solution is derived by method of asymptotic expansion on a singular small parameter. This 
solution contains regular terms of series expansion, as well as boundary layer functions 
decreasing rapidly with time. Characteristic decreasing time for these functions is propor-
tional to the small parameter. The obtained analytical solutions is applied for the problem 
of roller relaxation to the new equilibrium state after sharp increase of the external load-
ing. A peculiarity of this process is a rapid increase of the pressure peak just after the 
loading jump, which afterwards is gradually relaxing to the new stationary value corre-
sponding to the increase external loading. 
 
Keywords:  lubrication layer, hydrodynamic lubrication, roller oscillation, asymptotic series 
expansion. 
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