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При решении многих прикладных задач возникает проблема отыскания глобального 
экстремума. Особую актуальность представляют методы оптимизации, позволяю-
щие эффективно решать задачи, когда целевая функция зависит от сложной мате-
матической модели, требующей для своего решения больших вычислительных ресур-
сов.  В данной работе проведено сравнение метода Ψ − преобразования и 
канонического метода роя частиц. Выявлены недостатки некоторых известных ал-
горитмов метода Ψ − преобразования и предложена модификация, основанная на за-
мене случайного закона с равномерным распределением для генерации статистиче-
ских реализаций на второй и последующих итерациях стандартного алгоритма 
нормальным законом распределения с параметрами, определяемыми по результатам 
предыдущей итерации.  На основе обширного вычислительного эксперимента пока-
зано преимущество модифицированного алгоритма метода  Ψ − преобразования по 
сравнению с каноническим алгоритмом метода роя частиц. 
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Введение. Использование метода Ψ −преобразования и метода 

роя частиц очень широко и разнообразно.  
Так, например, в работе [1] на основе метода Ψ −преобразования 

разработан алгоритм оптимизации параметров электронных схем, ма-
тематическая модель которых выражается системой обыкновенных 
дифференциальных уравнений. Было показано, что данный метод поз-
воляет находить глобальный экстремум функции многих переменных 
с достаточной точностью, при этом затрачивая минимум машинного 
времени.  

В работе [2] анализ результатов, полученных для задачи планиро-
вания рабочих мест, показал, что способность метода Ψ −преобразо-
вания обнаруживать области нахождения глобального оптимума мо-
жет быть использована не только для невыпуклых непрерывных 
функций, но и в комбинаторной оптимизации. Пример решения ком-
бинаторных проблем в управлении производством с использованием 
метода Ψ −преобразования представлен в [3]. 
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В работе [4] предложен алгоритм решения задачи оптимального 
проектирования многокомпонентных дисперсно-армированных ком-
позиционных материалов. С помощью метода Ψ −преобразования в 
сформулированной задаче условной оптимизации композита с ограни-
чениями на его эффективные характеристики был определен глобаль-
ный минимум плотности на контуре, полученного при построении гра-
ницы множества точек, удовлетворяющих ограничениям.   

В работе [5] метод Ψ −преобразования успешно применен для ре-
шения задачи проектирования многослойного теплозащитного покры-
тия.  

Анализ эволюционных методов оптимизации на основе роевого 
интеллекта в работе [6] показал, что благодаря своей эффективности 
метод роя частиц является серьезным соперником для других методов 
глобальной оптимизации, а простота алгоритма позволяет реализовать 
данный метод без особых трудностей.  

Метод роя частиц широко используется в машинном обучении. 
Так в работе [7] было показано, что использование метода роя частиц 
в обучении искусственных нейронных сетей является наиболее эффек-
тивным, нежели обычно применяемый метод обратного распростране-
ния ошибки.  

Метод роя частиц также нашел применение и в задачах маршрути-
зации транспорта. Например, в работе [8] было показано, что исполь-
зование метода роя частиц в задаче составления расписания позволило 
получать более эффективные расписания движения транспортных 
средств по сравнению с часто используемым «жадным» алгоритмом.  

В работе [9] была разработана компьютерная система сегментации 
изображений на основе модифицированного алгоритма роя частиц и 
k-средних. Тестирование показало, что разработанный алгоритм явля-
ется достаточно результативным, а в некоторых случаях было видно 
явное превосходство по сравнению с существующими алгоритмами 
сегментации изображений. 

Анализ результатов в работе [10] показал, что метод роя частиц, 
модифицированный за счет дополнения его алгоритмом деления, яв-
ляется эффективным инструментом для решения таких многоэкстре-
мальных задач, как распознавание объектов.  

Свою высокую продуктивность метод роя частиц проявил в задаче 
синтеза антенн с контурными диаграммами направленности, форми-
рование которых происходит при нахождении амплитудно-фазового 
распределения[11]. 

Но, несмотря на широкую применимость методов Ψ −преобразо-
вания и роя частиц, у них имеются определенные недостатки. Так, 
например, задание большого количества параметров в методе роя ча-
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стиц накладывает некоторую неопределенность на реализацию алго-
ритма, а выход координат частицы за пределы области допустимых 
значений функции и преждевременная сходимость алгоритма к ло-
кальному экстремуму, вытекающая в невозможность продолжения 
дальнейшего поиска, делают метод неэффективным в определенных 
ситуациях [12]. 

 Что касается метода Ψ −преобразования, то его использование не 
дает хороших результатов в случае наличия у целевой функции не-
скольких глобальных экстремумов, достигаемых при различных зна-
чениях координат, или в случае незначительного отличия локального 
экстремума от глобального по значению целевой функции [13]. Также 
возникает проблема большого различия между значениями *F  (гло-
бального экстремума, вычисленного  с использованием координат) и 

*ξ  (глобального экстремума, полученного  вследствие ошибки ап-
проксимации Ψ −функции). Для устранения этой проблемы предлага-
ется метод вариации [14], который оказался недостаточно эффектив-
ным. Для того, чтобы продемонстрировать данный недостаток,  были 
проведены вычисления для следующих функций при выбранном шаге 

* 0.1ξ∆ =  и количестве испытаний 100s = : 
На рис. 1 представлена функция №1 – функция Швефеля: 
 

1 2 1 2 1 2( , )F x x x x x x= − − − , 1 2, [ 10;10]x x ∈ − . 

Рис 1. Функция Швефеля 

На рис. 2 представлена функция №2 – функция Экли: 
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2 2
1 2

1 2 1 2
1( , ) 20exp exp (cos(2 ) cos(2 )) ,

50 2
x xF x x e x xπ π

 +  = − + − + +       

1 2, [ 10;10]x x ∈ − . 

 
Рис. 2. Функция Экли 

На рис. 3 представлена функция №3 – двухэкстремальная функ-
ция:    

2 2
1 2 1 2 1( , ) 3 4 23cos( 0.5)F x x x x x= − − − − ,  1 2, [ 6;6]x x ∈ − . 

 
Рис. 3. Двухэкстремальная функция 
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Относительная погрешность полученных результатов вычисля-
лась по следующим формулам: 

1) в случае, если истинное значение глобального экстремума *F  
равно 0 или истинные координаты вектора экстремума *x  равны 0, то-
гда относительная погрешность вычисляется по следующей формуле: 

*

*

100%,

100%.

x

F

x

F

∆ = ⋅

∆ = ⋅
                                          (1) 

2) В противном случае:  

{ }

{ }

* *

* *

* *

* *

100%,
max ,

100%.
max ,

теор
x

теор

теор
F

теор

x x

x x

F F

F F

−
∆ = ⋅

−
∆ = ⋅

                           (2) 

Таблица 1 

Сравнение результатов, полученных с помощью метода 
 Ψ − преобразования с использованием и без вариации параметра ξ  

 
№ 
( , )F x y  

Полученные 
значения без 

использования 
метода вариа-

ции 

Полученные зна-
чения с исполь-
зованием метода 

вариации 

 
Теоретические 

значения 

 
Относительная 
погрешность, % 

1 

*

*

*
1

*
2

31.3363
0.5022

0.3446
0.1171

F
x
x

ξ = −

= −

=

= −

 

*

*

*
1

*
2

26.6363
0.3515

0.3502
0.0009

F
x

x

ξ = −

= −

=

= −

 

*

*
1
*
2

0
0
0

F
x
x

=

=

=

 
35.15
35.0201

F

x

∆ =
∆ =

 

2 

*

*

*
1
*
2

13.0008
16.581
0.3132
0.3586

F
x
x

ξ =

=

=

=

 

*

*

*
1
*
2

18.4008
18.1374
0.2619
0.0157

F
x
x

ξ =

=

=

=

 

*

*
1
*
2

20
0
0

F
x
x

=

=

=

 
9.313
26.237

F

x

∆ =
∆ =

 

3 

*

*

*
1
*
2

61.4856
11.0544
0.6273
0.0329

F
x
x

ξ = −

= −

= −

= −

 

*

*

*
1

*
2

7.5856
6.2319
2.0537

0.2518

F
x
x

ξ = −

=

= −

=

 

*

*
1

*
2

6.4892
2.0709

0

F
x

x

=

= −

=

 
3.965
12.1873

F

x

∆ =
∆ =
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По результатам, представленным в табл. 1, можно сделать вывод, 
что метод вариации приближает полученное значение экстремума к 
истинному значению, но при этом условие метода Ψ −преобразования 

* *F ξ≈  не выполняется. Одним из способов устранения данного недо-
статка могло бы быть использование гибридных алгоритмов на основе 
комбинации метода Ψ −преобразования и методов локального поиска 
аналогично тому, как это предложено в работе [15]. 

Из вышесказанного вытекает актуальность создания модификации 
алгоритма метода Ψ −преобразования, представленной в данной ра-
боте.  

Модифицированный алгоритм метода Ψ − преобразования. 
Данная модификация основана на работе [16]. 

Были выявлены некоторые недостатки алгоритма, представлен-
ного в [16]: 

1) Если на первой итерации задано небольшое число статистиче-
ских испытаний s , то уменьшение c каждой итерацией s  в a   раз яв-
ляется неэффективным, так как это может привести к выполнению на 
данной итерации одного испытания, что приведет к неправильной ра-
боте алгоритма и его принудительной остановке; 

2) Если текущее значение экстремума функции *F  оказывается 
меньше предыдущего, то выбор математического ожидания на основе 
текущих координат точки *x  экстремума может ухудшить получае-
мый результат на следующих итерациях. 

Для устранения вышеуказанных недостатков была предложена 
следующая модификация метода Ψ −преобразования:    

Итерация №1.  
Выполняем алгоритм определения глобального максимума при 

помощи обобщенных Ψ −функций [14].  
Итерация №2  
Шаг 1. Полагаем *

i im x= , где *
ix  – найденные на предыдущей ите-

рации координаты глобального максимума, и i
i a

σ
∆

= , где i∆  – 

длина отрезка, на котором определена переменная ix , т.е. i ix ∈∆ .  
Шаг 2. По случайному закону с нормальным распределением 

( , )i iN m σ  выбираем 1 2, ,..., nx x x , i ix ∈∆ ( i = 1,…, n ). Далее повторяем 
шаги (2) – (16) из итерации №1. 

Если * *
cur prevF F> , тогда выполняем шаг 1 итерации №2.  

Если * *
cur prevF F< , где *

curF  – значение максимума, полученное на те-
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кущей итерации, и *
prevF  – значение максимума, полученное на преды-

дущей итерации, тогда математическое ожидание фиксируется и рав-
няется *

,i i prevm x= , где *
,i prevx  – найденные на предыдущей итерации ко-

ординаты глобального максимума, а дисперсия i
i a

σ
∆

=  с каждым 

разом уменьшается в a  раз. Затем выполняем шаг 2 итерации №2.  
Итерационный процесс продолжается до тех пор, пока не выпол-

нится следующее условие останова: 

2
2* * * *

,
1

n

prev i i prev
i

F F x x ε
=

− + − <∑ , 

где ε  – заданная точность. 
Результаты сравнения модифицированного метода Ψ − преоб-

разования с каноническим методом роем частиц и методом Ψ −
преобразования с использованием вариации ξ . Сравнение моди-
фицированного метода Ψ −преобразования и канонического метода 
роя частиц, представленного в [17], осуществлялось по формулам (1) 
– (2).  

Все вычисления в методе Ψ −преобразования были выполнены с 
точностью 0.001ε = .  

На основании обширного вычислительного эксперимента были 
выбраны следующие параметры для реализации алгоритма канониче-
ского метода роя частиц: 

min max50, 25, 15, 0.7298, 0.98, 0.98,NP Nl Nl α β γ= = = = = =  

где NP  – количество частиц в стае, min max,Nl Nl  – параметры выбора 
числа «соседей» в стае; , ,α β γ  были выбраны, как рекомендованные в 
[16]. 

На основании обширного вычислительного эксперимента были 
выбраны следующие параметры для реализации алгоритма модифици-
рованного метода Ψ −преобразования: 

5, 4, 5, 100.a l k s= = = =  

Выполнив то же количество вычислений функции в каноническом 
методе роя частиц, за которое была достигнута выбранная точность 

0.001ε =  в модифицированном методе Ψ −преобразования, получили 
следующие результаты.   
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На рис. 4 представлена функция №1 – функция Шаффера (1000 
вычислений функции): 

2 2 2
1 2

1 2 2 2
1 2

sin ( ) 0.51( , ) ,
2 1 0.001( )

x x
F x x

x x
+ −

= −
+ +

 , [ 10;10]x y∈ −  

 

 
Рис. 4. Функция Шаффера 

Таблица 2 

Относительная погрешность результатов, полученных для функции Ша-
ффера с помощью модифицированного метода Ψ − преобразования и канони-

ческого метода роя частиц 

Теоретическое 
значение 

Метод  
Ψ − преобразования 

Канонический метод роя 
частиц 

*

* *
1 2

1
( , ) (0,0)

F
x x

=

=
 

*

* *
1 2

*

1
( , ) ( 0.0003, 0.001)

0.9926

F
x x

ξ

=

= − −

=

 
*

* *
1 2

0.9964
( , ) (0.008,0.0592)

F
x x

=

=
 

 
0

0.1044
F

x

∆ =
∆ =

 
0.36

5.9738
F

x

∆ =
∆ =

 

 
Для функции Шаффера: 
1) Относительная погрешность для значения полученного экстре-

мума функции *F  в случае модифицированного метода Ψ −преобра-
зования меньше на 0,36 %, чем в случае канонического метода роя ча-
стиц; 
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2) Относительная погрешность для полученных значений коорди-
нат *x  точки экстремума в случае модифицированного метода Ψ −
преобразования меньше на 5,8694 %, чем в случае канонического ме-
тода роя частиц. 

На рис. 5 представлена функция №2 – функция Растригина (1200 
вычислений функции): 

2 2
1 2 1 1 2 2( , ) 20 (10cos(2 ) ) (10cos(2 ) ),F x x x x x xπ π= − + − + −  

1 2, [ 5;5]x x ∈ −  

 
Рис. 5. Функция Растригина 

Таблица 3 

Относительная погрешность результатов, полученных для функции Рас-
тригина с помощью модифицированного метода Ψ − преобразования и кано-

нического метода роя частиц 

Теоретическое 
значение Метод  Ψ − преобразования Канонический метод роя 

частиц 

*

* *
1 2

0
( , ) (0,0)

F
x x

=

=
 

* 7

* * 5 5
1 2

*

7.5491 10
( , ) (3.0743 10 ,5.3479 10 )

0.0053

F
x x

ξ

−

− −

= − ⋅

= ⋅ ⋅

= −

 
*

* *
1 2

0.0204
( , ) (0.0019,0.0099)

F
x x

=

=
 

 
57.5491 10

0.0062
F

x

−∆ = ⋅
∆ =

 
2.04

1.0081
F

x

∆ =
∆ =

 

 
Для функции Растригина: 
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1) Относительная погрешность для значения полученного экстре-
мума функции *F  в случае модифицированного метода Ψ −преобра-
зования меньше на 2,04 %, чем в случае канонического метода роя ча-
стиц; 

2) Относительная погрешность для полученных значений коорди-
нат *x  точки экстремума в случае модифицированного метода Ψ - 
преобразования меньше на 1,0019 %, чем в случае канонического ме-
тода роя частиц. 

Функция № 3 – двухэкстремальная функция (1000 вычислений 
функции): 

2 2
1 2 1 2 1( , ) 3 4 23cos( 0.5)F x x x x x= − − − − , 

1 2, [ 6;6]x x ∈ − . 

Таблица 4 
Относительная погрешность результатов, полученных для двухэкстре-

мальной функции с помощью модифицированного метода Ψ − преобразова-
ния и канонического метода роя частиц 

Теоретическое значе-
ние 

Метод  Ψ − преобразова-
ния 

Канонический метод роя 
частиц 

*

* *
1 2

6.4892
( , ) ( 2.0709,0)

F
x x

=

= −
 

*

* *
1 2

*

6.4886
( , ) ( 2.064,0.0009)

6.4884

F
x x

ξ

=

= −

=

 
*

* *
1 2

6.4873
( , ) ( 2.0645,0.0186)

F
x x

=

= −
 

 

 
0.0092
0.336

F

x

∆ =
∆ =

 0.0293
0.9498

F

x

∆ =
∆ =

 

Для двухэкстремальной функции: 
1) Относительная погрешность для значения полученного экстре-

мума функции *F  в случае модифицированного метода Ψ −преобра-
зования меньше на 0,0201 %, чем в случае канонического метода роя 
частиц, и меньше на 3,9558 %, чем в случае метода Ψ −преобразова-
ния с использованием вариации ξ ;  

2) Относительная погрешность для полученных значений коорди-
нат *x  точки экстремума в случае модифицированного метода Ψ −
преобразования меньше на 0,6138 %, чем в случае канонического ме-
тода роя частиц, и меньше на 11,8513 %, чем в случае метода Ψ −пре-
образования с использованием вариации ξ . 

Функция № 4 – функция Швефеля (1000 вычислений функции): 
1 2 1 2 1 2( , )F x x x x x x= − − − , 

1 2, [ 10;10]x x ∈ − . 
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Таблица 5 

Относительная погрешность результатов, полученных для функции 
Швефеля с помощью модифицированного метода Ψ − преобразования и кано-

нического метода роя частиц 

Теоретическое 
значение Метод  Ψ − преобразования Канонический метод роя 

частиц 

*

* *
1 2

0
( , ) (0,0)

F
x x

=

=
 

*

* * 5
1 2

*

0.0009
( , ) (0.0008, 4.5818 10 )

0.0445

F
x x

ξ

−

= −

= − ⋅

= −

 
*

* *
1 2

0.0189
( , ) (0.0059,0.0129)

F
x x

=

=
 

 
0.09

0.0801
F

x

∆ =
∆ =

 1.89
1.4185

F

x

∆ =
∆ =

 

Для функции Швефеля: 
1) Относительная погрешность для значения полученного экстре-

мума функции *F  в случае модифицированного метода Ψ −преобра-
зования меньше на 1,8 %, чем в случае канонического метода роя ча-
стиц, и меньше на 35,06 %, чем в случае метода Ψ −преобразования с 
использованием вариации ξ ; 

2) Относительная погрешность для полученных значений коорди-
нат *x  точки экстремума в случае модифицированного метода Ψ −
преобразования меньше на 1,3384 %, чем в случае канонического ме-
тода роя частиц, и меньше на 34,94 %, чем в случае метода Ψ −преоб-
разования с использованием вариации ξ . 

Функция №5 – функция Экли (1000 вычислений функции):  

2 2
1 2

1 2 1 2
1( , ) 20exp exp (cos(2 ) cos(2 )) ,

50 2
x xF x x e x xπ π

 +  = − + − + +       

1 2, [ 10;10]x x ∈ − . 

Для функции Экли: 
1) Относительная погрешность для значения полученного экстре-

мума функции *F  в случае модифицированного метода Ψ −преобра-
зования меньше на 0,238, чем в случае канонического метода роя ча-
стиц, и меньше на 9,2765 %, чем в случае метода Ψ −преобразования 
с использованием вариации ξ . 

2) Относительная погрешность для полученных значений коорди-
нат *x  точки экстремума в случае модифицированного метода Ψ −

32 
 



Сравнение модифицированного метода Ψ −  преобразования… 

преобразования меньше на 1,4272 %, чем в случае канонического ме-
тода роя частиц, и меньше на 25,987 %, чем в случае метода Ψ −пре-
образования с использованием вариации ξ . 

Таблица 6 

Относительная погрешность результатов, полученных для функции Экли 
с помощью модифицированного метода Ψ − преобразования и канонического 

метода роя частиц 

Теоретическое 
значение Метод  Ψ − преобразования Канонический метод роя 

частиц 

*

* *
1 2

20
( , ) (0,0)

F
x x

=

=
 

*

* * 5
1 2

*

19.9927
( , ) (3.7144 10 , 0.0025)

19.8628

F
x x

ξ

−

=

= ⋅ −

=

 
*

* *
1 2

19.9451
( , ) ( 0.0157,0.0059)

F
x x

=

= −
 

 
0.0365
0.25

F

x

∆ =
∆ =

 0.2745
1.6772

F

x

∆ =
∆ =

 

Таким образом, для выше представленных тестируемых функций 
относительная погрешность метода Ψ −преобразования меньше на 
0,0201 – 2,04 %  для значений экстремума функции *F  и меньше на 
0,6138 – 5,8694 % для значений координат *x  точки экстремума функ-
ции  по сравнению с каноническим методом роя частиц, а также 
меньше на 3,9558 – 35,06 % для значений экстремума функции *F  и 
меньше на 11,8513–34,94 %  для значений координат *x  точки экстре-
мума функции  по сравнению с  методом Ψ −преобразования с исполь-
зованием вариации ξ . 

Выводы. Предложена модификация алгоритма метода Ψ −преоб-
разования, устраняющая недостатки известных алгоритмов. На основе 
обширного вычислительного эксперимента показано, что относитель-
ная погрешность результатов, полученных с помощью модифициро-
ванного метода Ψ −преобразования, меньше относительной погреш-
ности результатов, полученных с помощью  алгоритма канонического 
метода роя частиц, при одном и том же числе вычислений функций. 
Нахождение приближенного глобального экстремума при существен-
ном сокращении числа вычислений функций позволяет рекомендовать 
разработанный вариант алгоритма метода Ψ −преобразования для ре-
шения задач проектирования технических систем [18]. 
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  Ψ − transformation optimization method  in сomparison 
with canonical particle swarm optimization method 
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When dealing with many applications there is a problem of finding the global extremum. 
Of particular relevance are the optimization methods that allow solving problems effec-
tively when the objective function depends on a complex mathematical model that requires 
large computing resources for its solution. In this paper, a comparison is made between 
the  Ψ − transformation optimization method and the canonical particle swarm optimiza-
tion method. The flaws of some known algorithms of the   Ψ − transformation optimization 
method are revealed and a modification based on the replacement of a random law with 
uniform distribution for generating statistical realizations on the second and subsequent 
iterations of the standard algorithm by the normal distribution law with parameters deter-
mined by the results of the previous iteration is proposed. On the basis of the extensive 
computational experiment, the advantage of the modified algorithm of the  Ψ − transfor-
mation optimization method is shown in comparison with algorithm of the canonical par-
ticle swarm method. 
 
Keywords:  Ψ − transformation optimization method, global optimization methods, particle 
swarm optimization method. 
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