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Цель работы – оценить влияние инерционных эффектов и их отклонение от анало-
гичных квазистатических результатов. Исследована роль инерционных эффектов в 
проблеме теплового удара на примере массивного тела с внутренней сферообразной 
трещиной. Изучается термическая реакция упругого пространства с внутренней 
сферообразной трещиной, поверхность которой, первоначально свободная от напря-
жений и находящаяся при температуре T0, мгновенно нагревается до температуры 
TC > T0 и далее поддерживается при этой температуре.  Термонапряженное состо-
яние возникает при различных режимах теплового воздействия, создающих тепловой 
удар. Наиболее распространены на практике три случая: температурный нагрев, 
тепловой нагрев и нагрев средой. Получено обобщенное уравнение динамической тер-
моупругости для всех трех случаев в прямоугольных и криволинейных координатах. 
Рассмотрена термическая реакция массивного твердого тела с внутренней сферо-
оборазной трещиной. Получено точное аналитическое решение задачи. Ранее, в рабо-
тах одного из авторов, было получено решение динамической задачи в виде громозд-
ких функциональных конструкций, что значительно усложняло их практическое 
использование. В настоящей работе предложено решение задачи в новых классах 
функций, что делает решение более удобным   для численных экспериментов. Предло-
жено обобщённое дифференциальное соотношение для динамической термоупруго-
сти, имеющее обширное поле практических приложений при изучении термической 
реакции на тепловой удар твердых тел различной формы.  Показано, что составля-
ющая радиального напряжения, представляет собой сферическую упругую волну, рас-
пространяющуюся от поверхности полости внутрь материала. Выполнены числен-
ные расчеты динамических эффектов и показано, что квазистатическая трактовка 
временных проблем в теории теплового удара не позволяет учесть основные законо-
мерности скоротечной термоупругости и учётом инерционных эффектов. 
 
Ключевые слова: термоупругость, динамические напряжения, инерционные эф-
фекты. 

 
Введение. Термические или температурные напряжения в твердых 

телах возникают по различным причинам. Например:  
1.Неравномерный нагрев или охлаждение тела. В этом случае в 

теле появляется температурный градиент, следствием которого и яв-
ляются дополнительные к механическим температурные напряжения 
и деформации. 

2.Различие упругих и тепловых свойств материала в разных частях 
тела. 

3.Наличие неоднородностей и дефектов материала: неоднородно-
сти структуры, посторонние включения, трещины и т.п. В частности, 
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наличие трещины в материале вызывает концентрацию напряжений 
вблизи трещины как механических так и термических, а также концен-
трацию теплового потока. [1]  

4.В местах стыка частей конструкции из разных материалов. 
Если температура локально в некоторой точке М изменяется на ве-

личину ΔТ(М) по сравнению с температурой окружающих частей, то 
в этой точке М возникает добавочная деформация  

                                      ( ) ( ) ( )T
i j i jM M T Mε α δ= ∆                               (1) 

где ( )Mα −коэффициент объемного теплового расширения. Эта доба-
вочная деформация вызывает термоупругие (термические) напряже-
ния  ( )T

i j Mσ , которые добавляются к механическим напряжениям. По-
этому локальное напряженно-деформированное состояние твердого 
тела описывается двумя определяющими уравнениями с добавлением 
термических напряжений и деформаций 

( )1( ) (1 ) ( ) ( ( ) ( ))i j i j k k i jM M M E T M
E

ε ν σ νσ α δ= + − − ∆       (2а) 

(1 )( ) ( ) ( ) ( )
1 1 2 1 2i j i j k k i j

E EM M M T Mν α νσ ε ε δ
ν ν ν
 +  = + − ∆  + − −  

   (2б)    

где E −модуль Юнга, ν − коэффициент Пуассона. 
Действие термических напряжений проявляется в виде растрески-

вания материала, в виде пластической или для полимеров вынужденно 
эластической деформации и т.д.  Термические напряжения могут вы-
зывать потерю устойчивости изделия или детали конструкции, а также 
приводить к разрушению. Для хрупких материалов разрушение насту-
пает, когда термическое напряжение превосходит предел прочности 
материала в данном месте. Для пластических материалов термические 
напряжения могут вызвать местную пластическую деформацию. Для 
полимеров и композитов на их основе внешним аналогом пластиче-
ской деформации является вынужденно эластическая деформация, по-
явление которой приводит к потере эксплуатационных свойств изде-
лия. Термические напряжения могут релаксировать со временем. 
Однако вызванные ими пластические или вынужденно эластические 
деформации не исчезают. 

Термические напряжения вносят основной вклад в значение внут-
ренних напряжений в композиционных материалах на основе полиме-
ров. Например, стеклопластики, т.е. полимеры, армированные стек-
лянными или другими волокнами. Основной вклад в значение 
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внутренних напряжений в таких материалах вносят именно термиче-
ские напряжения. Возникновение термических напряжений обуслов-
лено релаксационными процессами, и их значение зависит от скорости 
изменения температуры [2-21].  

Особенно опасными являются термические напряжения, возника-
ющие при тепловом ударе. Тепловой удар-это кратковременное воз-
действие большой интенсивности, порождающее резкое, возможно 
локальное, изменение теплового состояния тела, и как следствие этого 
высокие термические напряжения и различные динамические явления.    

Динамические эффекты в теории теплового удара имеют давнюю 
историю. Так в ранних работах Дюгамеля (1838 год) отмечалось, что 
в случае изменения температуры в твердом теле с достаточно малой 
скоростью эффект инерции не может быть значительным, и эта точка 
зрения считалась бесспорной на протяжении более, чем 100 лет. В се-
редине прошлого столетия В. Даниловская вернулась к этому вопросу 
и детально исследовала динамические эффекты в массивных телах, 
находящихся в условиях теплового удара. Было показано, что в этих 
условиях ускорения имеют существенное значение, и квазистатиче-
ский подход не применим. К аналогичным выводам привели исследо-
вания Б.Боли для балок и пластин, Т. Мура для упругого полупро-
странства (который, по-видимому, не знал о ранней и более общей 
работе Даниловской), В. Новаковского для бесконечной среды с внут-
ренними нестационарными источниками теплоты, И. Игначака для 
упругого полупространства с точечным тепловым источником, Е. 
Штернберга и И. Чакраворти для бесконечной среды со сферической 
полостью, Э.Карташова для упругого полупространства с движущейся 
во времени границей и др. (ссылки в [22]). Тем не менее, не смотря на 
многочисленные публикации в этой области, отраженные также в об-
зорах [23,24], исследования указанной проблемы не могут считаться 
завершёнными. Этому вопросу посвящена и настоящая публикация. 

Определяющие соотношения. Пусть D − конечная или частично 
ограниченная область изменения пространственных переменных 

( ), ,M x y z  в соответствии с геометрией и размерами твёрдого тела, в 
котором изучается термическая реакция на тепловой удар; S − ку-
сочно-гладкая поверхность, ограничивающая область D , n   - внеш-
няя нормаль к S , вектор, непрерывно меняющийся на S; ( ),T M t −  
распределение температуры в области D при 0t > , 0T −  начальная тем-
пература, при которой область D находится в ненапряжённом и неде-
формированном состоянии; ( ), ,i j M tσ ( ), ,i j M tε ( , )iU M t

( ), , ,i j x y z= −  соответственно, компоненты тензоров напряжений, де-
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формаций и вектора перемещения, удовлетворяющие в D при 0t > ос-
новным уравнениям (несвязанной) динамической задачи термоупру-
гости: уравнениям движения (без учёта объёмных сил), геометриче-
ским уравнениям, физическим уравнениям (в индексных 
обозначениях) [22] 

, ( , ) ( , )i j j iM t U M tσ ρ=                                 (3)  

( ), ,
1( , ) ( , ) ( , )
2i j i j j iM t U M t U M tε = +                      (4)  

( )0

( , ) 2 ( , )

( , ) (3 2 ) ( ( , ) )
i j i j

T i j

M t M t

e M t T M t T

σ µε

λ λ µ α δ

= +

+ − + −
               (5) 

где ρ −  плотность материала; ,λ µ −   изотермические коэффициенты 
Ламе, , 2 (1 2 ) , 2 (1 )G G G Eµ λ ν ν ν= = − + =  (Е - модуль Юнга, G - 
модуль сдвига,  ν −  коэффициент Пуассона),  

                            ( , ) ( , ) ( , )i ie M t M t divU M tε= =


                    (6)  

объёмная деформация, связанная с суммой нормальных напряжений 
( , ) ( , )i iM t M tσ σ= равенством  

( ) 1
0( , ) 3 2 ( , ) 3 ( ( , ) )Te M t M t T M t Tλ µ σ α−= + + −        (7)  

Tα −коэффициент линейного теплового расширения, i jδ −  символ 
Кронекера. Термонапряжённое состояние области D при 0t >   может 
возникать при различных режимах теплового воздействия на границу 
S, создающих термический удар. К ним можно отнести наиболее рас-
пространённые на практике случаи [22-24]: 
• температурный нагрев 

0( , ) , , 0 , ,c cT M t T M S t T T= ∈ > >            (8)  

• тепловой нагрев  

                       0
( , ) 1 , , 0,

T

T M t q M S t
n λ

∂
= − ∈ >

∂
                    (9)   

где Tλ − теплопроводность материала, 0q −  тепловой поток, 
• нагрев средой  

                  ( )( , ) ( , ) , , 0,c
T M t h T M t T M S t

n
∂

= − ∈ >
∂

             (10)    

где h − относительный коэффициент теплообмена, CT − температура 
6 
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окружающей среды 0CT T> . Температурная функция ( ),T M t   удовле-
творяет уравнению нестационарной теплопроводности  

                                   ( , ) ( , )T M t T M t
t

∂
= ∆

∂
                                 (11)  

и может быть найдена как решение краевой задачи в D  при 0t ≥  для 
данного уравнения методами, развитыми в [25]. В практике исследо-
ваний термической реакции твёрдых тел различной формы на тепло-
вой удар рассматриваются области:     
1) (z,t) в декартовых координатах (x,y,z) (бесконечная пластина; про-
странство, ограниченное изнутри плоской поверхностью и т.д. – одно-
мерное движение) с температурной функцией T=T(z,t), при этом 

0 , ( , ) , ( , ) , , , , ,x y z z i j i j i jU U U U z t z t i j x y zσ σ δ= = = = =      (12) 

2) (r,t) в цилиндрических координатах (r,φ,z) (радиальный поток теп-
лоты; неограниченный цилиндр сплошной или полый; пространство, 
ограниченное изнутри цилиндрической поверхностью и т.д.) с темпе-
ратурной функцией T=T(r,t) , при этом  

0 , ( , ) , ( , ) , , , ,z r r i j i j i jU U U U r t r t i j r zϕ σ σ δ ϕ= = = = =    (13) 

3) (r,t) в сферических координатах (r, φ, θ) (нагрев в условиях цен-
тральной симметрии) с температурной функцией T=T(r,t), при этом  

0 , ( , ) , ( , ) , , , ,z r r i j i j i jU U U U r t r t i j rϕ σ σ δ ϕ θ= = = = =    (14) 

(шар сплошной или полый; пространство, ограниченное изнутри сфе-
рической поверхностью и т.д.). 

В указанных условиях температурного состояния всех трёх обла-
стей, исключая в формулах (3) – (5) напряжения и деформации, после 
серии длительных преобразований приходим к следующему (основ-
ному) обобщённому уравнению динамической термоупругости отно-
сительно вектора перемещения  ( , )U M t



  

02

1 2( ( , )) ( , ) ( ( , ) ),
3 2 T

p

grad divU M t U M t grad T M t T
v

λ µ α
λ µ
+

− = −
+

 

  (15) 

где  

2
pv λ µ

ρ
+

=                                               (16)  

 – скорость распространения волны расширения в упругой среде, близ-
кая к скорости звука в материале. 
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В первом случае соотношение (15) даёт 

( )2 2
0

2 2 2

( , )( , ) ( , )1 1 .
1

z z
T

p

T z t TU z t U z t
z v t z

ν α
ν

∂ −∂ ∂ +
− =

∂ ∂ − ∂
        (17) 

Во втором случае из (15)    следует 

( )

2 2

2 2 2 2

0

( , ) ( , ) ( , )1 1 1( , )

( , )1 .
1

r r r
r

p

T

U r t U r t U r tU r t
r r r r v t

T r t T
r

ν α
ν

∂ ∂ ∂
+ − − =

∂ ∂ ∂

∂ −+
=

− ∂

       (18) 

В третьем случае находим 

( )

2 2

2 2 2 2

0

( , ) ( , ) ( , )2 2 1( , )

( , )1 .
1

r r r
r

p

T

U r t U r t U r tU r t
r r r r v t

T r t T
r

ν α
ν

∂ ∂ ∂
+ − − =

∂ ∂ ∂

∂ −+
=

− ∂

       (19)  

Термическая реакция массивного тела с внутренней сферооб-
разной трещиной. Среди работ этого направления сформулированная 
задача занимает особое место, учитывая её прикладное значение для 
науки и техники [22-24]. В работах [26] и [27] эта задача была рассмот-
рена в квазистатической постановке; Джеффрис рассмотрел более 
простую задачу для случая внезапного равномерного давления по-
верхности сферической полости (ссылки в [23,24]). В работах [22] и 
[27] была рассмотрена динамическая модель указанной задачи, однако 
точные аналитические решения динамической задачи, предложенные 
авторами, имели вид громоздких функциональных конструкций и при 
этом в терминах функций ошибок комплексных аргументов, что зна-
чительно усложняло возможность практического использования полу-
ченных результатов. В настоящей работе предлагается точное анали-
тическое решение задачи в иных классах функций, что значительно 
устраняет громоздкость в записи решения и делает решение более 
удобным для численных экспериментов. 

Изучается термическая реакция упругого пространства (r,φ,θ) r ≥ 
R  с внутренней  сферообразной трещиной 0 ≤ r ≤ R, поверхность ко-
торой r = R, первоначально свободная от напряжений и находящаяся 
при температуре T0, мгновенно нагревается до температуры TC > T0 и 
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далее поддерживается при этой температуре. Возникающие вслед-
ствие наличия температурного градиента ( , )grad T r t   напряжения и 
деформации  будут зависеть только от r  и t , то есть ( , ),i j i j r tσ σ=

( , ) , ( , , , );i j i j r t i j rε ε ϕ θ= = при этом отличной от нуля является 
только радиальная компонента вектора перемещения, то есть вели-
чина ( ),U r t , удовлетворяющая согласно уравнению (15) соотноше-
нию: 

( )

2 2

2 2 2 2

0

( , ) 2 ( , ) 2 1 ( , )( , )

( , )1 , , 0
1

r

p

T

U r t U r t U r tU r t
r r r r v t

T r t T
r R t

r
ν α
ν

∂ ∂ ∂
+ − − =

∂ ∂ ∂

∂ −+
= > >

− ∂

              (20)     

Исходную модель запишем как это обычно принято в термомеха-
нике в безразмерных переменных: 

2

0

0

0

0

0 0

; ; ;

(1 ) ( , )( , ) ;
(1 ) ( )

( , )( , ) ;

(1 2 ) ( , ) 1 2( , ) ; ;
( ) 1

(1 2 ) ( , ) (1 2 ) ( , )
( , ) ( , ) ;

( ) ( )

2 (1 )
(

p

T c

c

r r

T c

T c T c

p

r at a
R R v R

U r tU
R T T

T r t TW
T T

r t
p

E T T
r t r t

E T T E T T

Gv

ρ

ρ ρ

ϕϕ θθ
ϕϕ θθ

ρ τ γ

νρ τ
ν α

ρ τ

ν σ νσ ρ τ
α ν

ν σ ν σ
σ ρ τ σ ρ τ

α α

ν
ρ

= = =

−
=

+ −
−

=
−

− −
= =

− −
− −

= = =
− −

−
= .

1 2 )ν−

      (21) 

Имеем 

2 2
2

2 2 2

2 2 ; 1 , 0.
U U U WUρ ρ ρ

ρ γ ρ τ
ρ ρ ρ ρ τ ρ

∂ ∂ ∂ ∂
+ − − = > >

∂ ∂ ∂ ∂
           (22)  

Начальные и граничные условия для этого уравнения таковы 
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0 0

1

( , )
( , ) | | 0, 1,

( , ) 12(1 ) ( , ) ( , ) | 0, 0,

( , ) , 1, 0.

U
U

U
p U W

U

ρ
ρ τ τ

ρ
ρ ρ

ρ

ρ τ
ρ τ ρ

τ
ρ τ

ρ τ ρ τ τ
ρ ρ

ρ τ ρ τ

= =

=

∂
= = ≥

∂
∂ 

+ − − = > ∂ 
< +∞ ≥ ≥

         (23)  

Безразмерная температурная функция ( ),W ρ τ   является реше-
нием краевой задачи 

2

2

0 1

2 , 1, 0,

( , ) | 0, 1; ( , ) | 1, 0,

( , ) , 1, 0.

W W W

W W

W
τ ρ

ρ τ
τ ρ ρ ρ

ρ τ ρ ρ τ τ

ρ τ ρ τ
= =

∂ ∂ ∂
= + > >

∂ ∂ ∂
= ≥ = >

< +∞ ≥ ≥

                 (24)  

В пространстве изображений по Лапласу она имеет вид 

                          ( )( )1( , ) exp 1 ,W s s
s

ρ ρ
ρ

= − −                            (25) 

здесь s – лапласовская переменная. 
Находим из (22), (23)  лапласовское изображение для перемещения 
( ),U sρ ρ : 

  

( )
( )

( ) ( )

2 2 2

2 2

2 2 2 2 2

1( , ) exp ( 1)
( 1)

(1 ) 2 (1 )
exp ( 1) ,

( 1) ( )

sU s s
s s

s s p s
s

s s s p q

ρ
ρρ ρ

ρ γ

ργ γ
ρ γ

ρ γ γ

+
= − − −

−

+ + +
− − −

− + +

                (26) 

где   1 2
1

q ν
ν
−

=
−

. 

Радиальная компонента напряжения ( , )ρ ρσ ρ τ    связана с переме-
щением ( , )Uρ ρ τ   соотношением: 

2(1 )( , ) .
U p U W

p
ρ

ρ ρ ρσ ρ τ
ρ

∂ −
= + −

∂
                   (27) 

Из (26) и (27) (в пространстве изображений) находим: 
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( )
( )( )

( ) ( )

2 2 2

3 2 2

2 2 2 2

3 2 2 2 2

2 2( , ) exp ( 1)
(1 )

( ) 2 (1 )
exp ( 1) .

(1 ) ( )

p s p s ps s
s s

p s q s p s
s

s s s p q

ρ ρ
γ ρσ ρ ρ

ρ γ

ργ γ
ρ γ

ρ γ γ

+ +
= − − −

−

+ + + +
− − −

− + +

         (28) 

Заметим, что при такой форме записи изображения  ( , )sρ ρσ ρ  
легко проверяется выполнение граничного условия (1, ) 0sρ ρσ = . Пе-
реход к оригиналам в (28) представляет собой достаточно сложную и 
громоздкую задачу. Для нахождения оригиналов используем равен-
ство  

( )2 2 2 22 2 ( ) 2 (1 )s p s p s p q p s sγ γ γ+ + = + + + −             (29) 

и далее введём новые в теории теплового удара   функции: 

1
2

2 2 2
0

1( ) ; 0,1, 2.
(1 ) ( 2 2 )

n
x

n
xK e dx n

x x p x p
ττ

π γ γ γ

−∞
∗ −= =

+ − +∫         (30) 

Эти функции дают оригиналы выражений 

1
2

2 2

1 ( 1)( )
2 (1 ) ( 2 2 )

ni n
s

n
i

sK e ds
i s s p s p

γ ω
τ

γ ω

τ
π γ γ γ

−+
∗

−

−
=

+ + +∫                (31) 

и найдены путём вычисления контурных интегралов Римана-Меллина 
(31)  от изображений, имеющих точку ветвления при 0=s . Введём 
также функцию  

 
( )

1 2

2

2

1 12 ( , ) exp
2

1 1 1exp exp ( 1) .12
s

s

τ ρ ρ τψ ρ τ
γ γ γτ

τ ρ ρ τ ρ
γ γ γτ

γ

∗

∗

  − −
= − Φ − +       

  − −
+ Φ + + − −        −

          (32) 

Опуская длительные вычислительные процедуры, находим иско-
мый оригинал для ( , )ρ ρσ ρ τ : 
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(1)
(2)

0, ( 1)
( , ) ( , ) ,

( , ( 1) ), ( 1)ρ ρ ρ ρ
ρ ρ

τ ρ γ
σ ρ τ σ ρ τ

σ ρ τ ρ γ τ ρ γ

< −= +  − − > −
       (33) 

где 

(1)
1 12 2

0

13 2
0

1 4( , ) ( , ) ( , )

2 ( , ) ( ) ,

p x xdx

p x x dx

τ

ρ ρ

τ

σ ρ τ ψ ρ τ ψ ρ τ
ρ ρ γ π

ψ ρ τ
ρ γ

= − + − −

− −

∫

∫
         (34) 

2 2 2
(2)

1 03 2

3

23 3 2

2 2

2 2 3

2 (2 1 ) 4( , ) ( ) ( )

2 2( ) 2 ( 1)exp

2 ( ) 2 ( ( 1)exp .

p p pK K

p pK

p p

ρ ρ
γ γ γσ ρ τ τ τ

ρ ρ

γ τ τ ττ γ γ
ρ ρ π γ γ

ρ γ γ ρ τ γ τ γ ρ γρ
ρ γ ρ

∗ ∗

∗ ∗

− +
= − −

   
− − + − Φ − +          

 + + + − − +
+ − 

 

         (35) 

Здесь: 

 
2

0

2( ) 1 ( ), ( )
z

yz z z e dy
π

∗ −Φ = −Φ Φ = ∫                           (36) 

– функция Лапласа. Остальные функции указаны в (30) и (32). Из (28) 
при 0γ = находим квазистатическое решение: 

 3 2

1( 1) exp
42( , ) .

1 1 2
2 2

p
ρ ρ

τ ρρ
π τ

σ ρ τ
ρ ρ ρ ττ τ

πτ
∗

 − − − +  
  =    − −  + + Φ − +            

            (37) 

  
Компонента ( , )θθσ ρ τ   связана с перемещением ( , )Uρ ρ τ   соотно-

шением: 

( , ) 2( , ) (1 ) ( , ) ( , )
U pp U Wρ

θθ ρ

ρ τ
σ ρ τ ρ τ ρ τ

ρ ρ
∂ −

= − + −
∂

            (38) 

откуда и из (27) находим 
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1( , ) ( , ) ( , ) ,p Uθθ ρ ρ ρσ ρ τ σ ρ τ ρ ρ τ
ρ ρ
 ∂

= −  ∂  
               (39) 

что даёт в пространстве изображений 

( ) ( )
( )( )

( ) ( )

2

3 2 2

2 2 2 2 2

3 2 2 2 2

3(1 )
( , ) ( , ) exp ( 1)

( 1)

3(1 ) 2 (1 )
exp ( 1) ,

( 1) ( )

p s s
s s s

s s

p s s s p s
s

s s s p q

θθ ρ ρ

ρ ρ
σ ρ σ ρ ρ

ρ γ

ργ ρ γ γ
ρ γ

ρ γ γ

+ +
= + − − −

−

+ + + +
− − −

− + +

  (40) 

где  ( , )sρ ρσ ρ   - расписано в формуле (28). 
Исходный оригинал для ( , )θθσ ρ τ   имеет вид: 

 
( )

(1)
(2)

0, ( 1)
( , ) ( , ) ,

, ( 1) ( 1)θθ θθ
θθ

τ ρ γ
σ ρ τ σ ρ τ

σ ρ τ ρ γ τ ρ γ

< −= +  − − > −
    (41) 

где 

(1)
1 13 2

0

13 2
0

2 1( , ) ( , ) ( ) ( , )

2 1( , ) ,
2

p px x dx

p px x dx

τ

θθ

τ

σ ρ τ ψ ρ τ ψ ρ τ
ρ γ ρ

ρψ ρ τ
ρρ γ π τ

∗

−
= − + +

− + − − Φ  
 

∫

∫
               (42) 

 
2 2

(2)
13

2 3

0 22 3

3 2

2 2

3 2 3

2 (1 ) (2 1)
( , ) ( )

2 ( ) ( )

2 ( 1)exp

(1 ) ( ) ( )exp .

p p p
K

p pK K

p

p p p

θθ

γ ρ
σ ρ θ τ

ρ
γ γτ τ

ρ ρ

τ τ τγ γ
ρ π γ γ

ρ γ γ ρ τ τ γ γρ
ρ γ ρ

∗

∗ ∗

∗

− − −
= +

+ + +

   
+ + − Φ − +          

 − − + + +
+ + 

 

          (43) 

Функции, входящие в (42), (43) указаны выше.  Из (40) при 0γ =  
находим квазистатическое решение: 
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( )

2

3
2

( 1)2 ( 1) exp
4

( , ) .
1 17 12 7
2 2

p
θθ

τ τ ρτ ρ
π π τ

σ ρ τ
ρ ρτ ρ ρ

τ
∗

  −
+ − + − −  

  =  −  − + − + Φ     

        (44) 

Численные расчеты и обсуждение.  Как указывалось, цель ра-
боты – оценить влияние инерционных эффектов и их отклонение от 
аналогичных квазистатических результатов. Как видно из выражения 
(33) составляющая радиального напряжения, выражаемая функцией 

(1)
ρ ρσ   представляет собой сферическую упругую волну, распространя-

ющуюся от поверхности полости внутрь материала со скоростью vp. 
Рассмотрим произвольную точку ( , )ρ τ   внутри пространства. Вначале 
в ней возникает только составляющая напряжения (1)

ρ ρσ  и напряжение 
растёт от нуля до некоторого отрицательного значения, оставаясь сжи-
мающим; в момент времени ( 1)pτ γ= −   к этой точке приходит волна, 
соответствующая функции (2)

ρ ρσ , происходит суперпозиция волн, при-
водящая к скачкообразному изменению напряжения и его дальней-
шему спаду до квазистатических значений. Представляет интерес рас-
считать величину скачка напряжений на фронте термоупругой волны, 
используя теорему запаздывания для слагаемого вида 

( ) exp( ( 1) )Q s sρ γ− −   в операционном решении (28).  Находим для  
( , )ρ ρσ ρ τ : 

 
( 1) 0 0

1lim ( ( 1) ) lim ( ) lim ( ) .
s

Q s Q sQ s
τ ρ γ τ

τ ρ γ τ
ρ→ − + → + →∞

∆ = − − = = =         (45) 

В координатах ( , )r t   находим для ( , ) :r r r tσ  

                        0( ) .
(1 2 )
T cE T T R

r
α

ν
−

∆ = ⋅
−

                                     (46) 

На рис. 1 приведено рассчитанное изменение напряжения 
( , )ρ ρσ ρ τ    в сечении 2ρ =   в зависимости от τ  для 0.25, 1ν γ= =    

(значение γ принято достаточно большим, что позволяет отчётливо 
выявить особенности динамических эффектов), вычисленное по фор-
мулам (33)-(35)  и квазистатическая кривая (37). 

Как видно из графика, в результате действия сил инерции в сече-
нии ρ =2 при τ < γ возникает сжимающее напряжение, изменяющееся 
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от 0 до значения (-0.54) при τ = γ , что значительно превосходит квази-
статическое значение (37). В момент времени τ = γ  под действием упо- 
мянутой выше упругой волны расширения происходит скачкообраз-
ное изменение ρ ρσ  на величину 0.5∆ =  и после прохождения волны 
расширения напряжение, оставаясь сжимающим, быстро уменьша-
ется, приближаясь к квазистатическому значению и далее обе кривые, 
в свою очередь, стремятся к 
стационарной асимптоте. 
Следует подчеркнуть важное 
прикладное значение соот-
ношения (46)   для исходного 
(в системе (r,t)) радиального 
напряжения ( , )r r r tσ . Видно, 
что величина скачка опреде-
ляется тепловыми и упру-
гими свойствами материала, 
зависит от величины нагрева 
сферической полости, её раз-
мера и может служить верх-
ней оценкой максимальной 
величины радиального 
напряжения в конкретном сферическом сечении  r=const. На рис. 2 
приведено распределение напряжения ( , )ρ ρσ ρ τ  по текущей толщине 
от сферической поверхности вглубь материала для различных τ при 
тех же значениях ν и γ. Фронт волны находится в точке 1ρ τ= + , скачок 
напряжения имеет величину 1 ( 1)τ∆ = + .  

 

 
Рис. 2. Зависимость радиального напряжения по текущей толщине в разные 

моменты времени при 1γ = , 0.25ν = : ---- – 0.5τ = ; ___  – 1τ = ; ……  – 1,5τ =  

 
Рис. 1. Временная зависимость 
( ),ρρσ ρ τ  при 2ρ = , 0.25ν = : 

 ___  – динамическая кривая при 
1γ = ; ----  – квазистатическая кривая при

0γ = ; …….  – стационарная асимптота 
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Видно, что максимальная амплитуда напряжения уменьшается с 
течением времени τ и возрастает для времён микросекундной длитель-
ности. На рис. 3 приведена временная зависимость ( , )θθσ ρ τ  при ρ=2, 
γ=0.2, ν=0.25, рассчитанная по формулам (41)-(43), а также квазиста-
тическая кривая (44). 

Как видно из графика, 
пиковое значение динами-
ческой кривой отражает 
скачок на фронте волны 
(величиной (1 )ρ ρ∆ = − ) 
и также значительно пре-
восходит квазистатиче-
ское значение. Как и сле-
довало ожидать, дина-
мическая кривая на рис. 3 
близка по графике кривой 

ρ ρσ  на рис. 1 и не повто-
ряет аналогичных резуль-
татов численного экспери-

мента, приведённых в [28] при тех же значениях параметров. 
Выводы. 1. Предложено обобщённое дифференциальное соотно-

шение для динамической термоупругости, имеющее обширное поле 
практических приложений при изучении термической реакции на теп-
ловой удар твердых тел различной канонической формы.  

2. Приведены численные расчеты динамических эффектов и пока-
зано, что квазистатическая трактовка временных проблем в теории 
теплового удара не позволяет учесть основные закономерности скоро-
течной термоупругости и учётом инерционных эффектов. 
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Mathematical modeling of thermal stresses in a solid with 
an internal crack 
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The purpose of this study was to evaluate the influence of the inertial effects and their 
deviation from the same quasi-static results. The role of inertial effects in the problem of 
thermal shock is studied on the example of a massive body with an internal spherical crack. 
We study the thermal reaction of an elastic space with an internal spherical crack whose 
surface, initially stress-free and at a temperature of T0, is instantly heated to a temperature 
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of TC > T0 and then maintained at that temperature.  Thermal stress state occurs under 
different modes of heat exposure, creating heat stroke. The most common in practice, three 
cases: temperature heating, thermal heating and heating medium. The generalized dy-
namic thermoelasticity equation for all three cases in rectangular and curvilinear coordi-
nates is obtained. Considered the thermal response of a massive rigid body with internal 
spiroborate crack. The exact analytical solution of the problem is obtained. Earlier in the 
works of one of the authors the solution of the dynamic problem in the form of bulky func-
tional structures was obtained, which greatly complicated their practical use. In this paper, 
we propose a solution to the problem in new classes of functions, which makes the solution 
more convenient for numerical experiments.  A generalized differential relation for dy-
namic thermoelasticity is proposed, which has an extensive field of practical applications 
in the study of thermal response to heat stroke of solids of different shapes.  It is shown 
that the component of the radial stress is a spherical elastic wave propagating from the 
cavity surface into the material. Numerical calculations of dynamic effects are performed 
and it is shown that the quasi-static interpretation of time problems in the theory of heat 
stroke does not allow to take into account the basic laws of transient thermoelasticity and 
inertial effects. 
 
Keywords: thermoelasticity, dynamic voltage, inertial effects. 
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