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Проведено обобщение предложенной ранее зависимости для определения давления в 
возмущенной области около сферы, обтекаемой сверхзвуковым потоком невязкого 
совершенного газа. Обобщенная зависимость позволяет определить параметры об-
текания для газов с эффективным показателем адиабаты, отличным от совершен-
ного. Показано, что давление существенно зависит от показателя адиабаты. Моди-
фикация исходной зависимости проводится на основании данных о параметрах 
высокотемпературного газа на критической линии. Принимается допущение о про-
порциональном изменении параметров обтекания во всей области. Результаты при-
менения модифицированной зависимости сравниваются с данными для высокотемпе-
ратурного и показывают высокую достоверность. Приведенная зависимость может 
быть использована самостоятельно для расчета течений около сферических элемен-
тов аэродинамических компоновок или в качестве начального приближения для высо-
коточных методов в рамках строгой математической постановки системы уравне-
ний газовой динамики. 
 
Ключевые слова: сверхзвуковой поток, метод Шепарда, высокотемпературный 
газ. 

 
Введение. Спускаемые модули космических аппаратов и межпла-

нетные зонды при входе в атмосферу планет нуждаются в существен-
ном снижении скорости для обеспечения мягкой посадки на поверх-
ность [1, 2]. Как правило, выделяют два этапа торможения 
спускаемого аппарата, аэродинамическое торможение и непосред-
ственный спуск. Для аэродинамического торможения спускаемые ап-
параты оснащаются различными аэродинамическими тормозными 
устройствами. В данной работе мы обращаем внимание на случаи, ко-
гда торможение осуществляется при помощи сферических элементов. 
Известно, что спускаемые модули нередко оснащаются сферическими 
щитами, затупленными тормозными конусами или представляют из 
себя сферы [3, 4, 5]. Таким образом, определение аэродинамических и 
тепловых нагрузок, приложенных к сферическим элементам спускае-
мых аппаратов и межпланетных зондов является актуальной задачей 
для конструирования земных и межпланетных спускаемых аппаратов.   
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Ранее была предложена зависимость для определения давления в 
возмущенной области около сферы, обтекаемой потоком сверхзвуко-
вого совершенного газа с показателем адиабаты Пуассона 1.4 [6]. За-
висимость была получена путем обобщения данных расчетов в рамках 
строгой постановки системы уравнений газовой динамики [7] сред-
ствами анализа данных. Построенная зависимость с высокой долей до-
стоверности описывала распределение давления в зависимости от 
числа Маха, величины центрального угла σ  и нормализованной коор-
динаты ξ , однако, эта зависимость не позволяет учесть свойства газов, 
отличных от совершенного. В то же время, в ряде работ [8 – 9] приво-
дятся обобщенные зависимости для определения давления вдоль кри-
тической линии при обтекании сферы в зависимости от показателя 
адиабаты. Учет результатов [8 – 9] при корректировке зависимости [6] 
позволяет учесть свойства высокотемпературных газов при определе-
нии давления в возмущенной области около сферы.  

В работе [7] продемонстрировано, что изменение показателя адиа-
баты не существенно влияет на отношение коэффициента лобового со-
противления к давлению торможения 

/
0/Cx P . Однако, давление, ис-

пользуемое в качестве начального приближения в задачах, связанных 
с численным интегрированием системы уравнений газовой динамики, 
существенно зависит от показателя адиабаты. На рис. 1 приведено 
сравнение распределения давления по поверхности сферы в зависимо-
сти от центрального угла для различных отношений теплоемкостей 
при числах Маха М=3 (рис. 1а) и М=8 (рис. 1б). 

 
 

а б 
Рис. 1. Распределение давление вдоль поверхности сферы при различных пока-

зателях адиабаты, синяя - 1, 4γ = , красная - 1,18γ = , зеленая - 1,66γ = : 
а – число Маха М=3; б – число Маха М=8 

Целью работы является построение зависимости, способной с вы-
сокой точностью определять давление в возмущенной области около 
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сферы при различных показателях адиабаты Пуассона для последую-
щего самостоятельного применения и внедрения в программные ком-
плексы, предназначенные для определения аэродинамических харак-
теристик летательных аппаратов. 

Подход к решению. Для построения зависимости используется 
функция Шепарда. Функция Шепарда представляет собой интерпо-
лянт, учитывающий влияние и тенденцию известных узловых значе-
ний. Любое значение функции на интервале интерполяции является 
суммой средневзвешенных значений в узлах. Модификации метода 
позволяют учесть не только значения в узлах, но и тенденции к их из-
менению. Модифицированная функция Шепарда [10 – 11] выглядит 
следующим образом: 

( )

( )2
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1

2

1 1,
,

i i
i

i
i i

i

f U F w

U w
w
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F D E

ξ
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=

= =

= + +
= +

∑

∑                               (1) 

здесь iF  - узловое значение взвешиваемых функций, iw  имеет смысл 

веса, убывающего при удалении от узла, а ( ),iρ ξ ξ  евклидово рассто-
яние от узловой точки до текущей, ξ  представляет собой нормализо-
ванную координату, изменяющуюся от 0 на теле до 1 на ударной 
волне, параметры A, B, C, D, E зависят от величины центрального угла 
и числа Маха, ниже они рассматриваются отдельно. 

Обратим внимание на то, что в узлах интерполяции знаменатель 
весовой функции обращается в ноль и поправим функцию с учетом 
этого факта: 
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,
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i i
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Определение коэффициентов зависимости. Параметр C имеет 
смысл давления на поверхности тела и вычисляется, согласно [12, 13]. 

Давление 
0

P
P ′

 на поверхности сферы от точки торможения и до отрыва 

потока рассчитывается по формуле: 
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, σ  - центральный угол, **σ  - положение звуковой 

точки на поверхности сферы [12, 13]. Будем пользоваться этой же фор-
мулой и в случае, когда эффективный показатель адиабаты отличен от 
1.4 

Связь этого соотношения с давлением P
P∞

, которое используется в 

наших рассуждениях,  можно установить по формуле Релея: 
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Соответственно, коэффициент C можно определить следующим 
образом: 

0

0

.
b

PP PC
P P P∞ ∞

′
= =

′
                                  (3) 

Соотношения эти справедливы при любом показателе адиабаты. 
Для большей ясности в дальнейшем будем обозначать показатель 
адиабаты, если речь идет о совершенном газе γ , в других случаях - .κ
Соответственно, коэффициент С будем вычислять, заменив γ  на κ . 

Примем допущение о том, что изменение показателя адиабаты не 
приводит к изменению тенденции для давления. Тогда параметры A, 
B, D,  определяющие тенденцию к изменению давления по мере уда-
ления от узловых точек, могут быть найдены из зависимостей, полу-
ченных в [6] по методам, описанным в [14, 15, 16]: 
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       (4)

 

Коэффициенты перед степенями σ  (σ  для A, B, D измеряется в 
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градусах), зависящие от числа Маха определяются следующими со-
отношениями (5-7): 

7 2 7 6

4 2 4 4

4 2
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=-6.2324673 10 M +9.5658655 10 M+2.2713325 10 ,
=1.0672898 10 M -2.4028788 10 M-6.0210992 10 ,
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=-0.1939579M -0.1312538M-0.3101295.
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=-2.3409625 10 M +1.1093017 10 M+2.5939363 10 ,
2.8811573 10 M -2.0172379 10 M+6.3008946 10 ,
9.7615728 10 M +0.0047502M-0.0083492,
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Коэффициент E определяется из условий Ренкина-Гюгонио [17, 

18] на ударной волне. Поскольку с изменением показателя адиабаты 
меняется геометрия ударной волны, коэффициент Е необходимо мо-
дифицировать. 

Рассмотрим соотношение для определения отхода ударной волны 
из [6]: 

( ) ( ) ( ),
1w

F
r M G

M
σ

σ σ= +
−

.                                 (8) 

Здесь ( ),wr M σ  – отход ударной волны от тела по радиальному 
направлению в зависимости от значения числа Маха и центрального 
угла, вычисляемый в долях радиуса сферы. Зависимости ( ) ( ),F Gσ σ  
имеют вид: 
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(σ  для F, G измеряется в градусах), 
Зная отход ударной волны от тела, можно легко вычислить ее 

наклон в конкретной точке и определить давление на поверхности 
ударной волны из соотношений Ренкина-Гюгонио. Однако формула 
(8) справедлива для совершенного газа. В работах [8 – 9] приведены 
зависимости для отхода ( )0 1ε γ +  ударной волны на критической ли-
нии: 

( ) ( ) ( )
2

0 2 2

0.07 0.071 0.76 1.05 1K K
M M

ε γ γ γ
    + = + + + +         

,       (9) 

где ( )K γ  – коэффициент сжатия, определяемый формулой: 
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Сравнение показывает (рис. 2), что отход ударной волны, вычис-
ленный по формуле (8) на критической линии для совершенного газа 
совпадает со значениями из работ [8 – 9]. 

 

Рис. 10. Отход ударной волны от тела на критической линии в долях радиуса 
обтекаемой сферы: 

 красным цветом – вычисленный по формуле (9), синим цветом – вычисленный по формуле (8) 
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То есть, верно соотношение  

( ) ( )0 1 wrε γ γ+ =                    (10) 

С учетом (10) можем записать следующую пропорцию: 

( )
( )

( )
( )

0

0

1 0;  
1 0;  

w

w

r
r

ε γ σ γ
ε κ σ κ

+ =
=

+ =
 

Предположим, что отход ударной волны от тела с изменением по-
казателя адиабаты на всех линиях меняется пропорционально отходу 
на критической линии. Тогда можем перейти к произвольному σ  и по-
строить следующую зависимость: 

( ) ( ) ,  0;
2

w
w

r
r

γ πκ σ
ν

 = ∀ ∈  
,      (11) 

где ν  соответствует отношению отходов ударной волны на крити-
ческой линии при различных значениях γ : 
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    + + + +         =
    + + + +         

. 

Зная отход ударной волны, можно легко определить давление на 
ударной волне из условий Ренкина-Гюгонио: 

2 2

1

2 1sin
1 1

P M
P

ξ

γ κα
γ κ∞ =

−
= −

+ +
, 

где α  – угол наклона касательной к ударной волне. 
Параметр Е можно описать следующим образом [6]: 
 

1

PE D
P∞

= − .                      (12) 

 
Определив все необходимые зависимости, можем построить рас-

пределение давления в соответствие с формулой (1). 
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Анализ результатов. Результаты сравнивались с расчетами, пред-
ставленными в [9] при значении числа Маха М=3 и эффективного по-
казателя адиабаты 1,18κ = . Из рис. 3 видно, что предлагаемая зависи-
мость достаточно точно повторяет расчеты. Также на рис.3 помещено 
распределение давления в возмущенной области при значении 1,4,γ =  
что позволяет увидеть существенное изменение давления при измене-
нии показателя адиабаты.  

 

Рис. 3. сравнение распределения давления в возмущенной области около сферы 
на различных лучах. Сплошная линия – распределение давления для совершенного 
газа [19], пунктирная линия – распределение давления с использованием предлагае-

мой зависимости, ромбы – данные из [9]: 
 синий цвет соответствует критической линии, красный – 30σ =  , зеленый – 45σ =   

Кроме того, в работе [9] приведена зависимость, описывающая 
движение сферы в атмо-
сфере Земли на различных 
высотах со скоростями, со-
ответствующими числу 
Маха М>4. Из рис. 4 можно 
видеть, что кривая из ра-
боты [7] не существенно 
отличается от кривой, по-
лученной по методу из [12], 
который использовался для 
определения коэффици-
ента С. Эффективный пока-
затель адиабаты в данном 
случае составил 1,2κ = . 

Рис. 4.  Давление /
0P P  на поверхности тела 

по [7] (синяя) и коэффициент С, приведенный 
к виду /

0P P  (красная), M=20. 
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При известном давлении, тепловые нагрузки могут быть учтены по ме-
тодике, предложенной в [20]. 

Заключение. Предложена зависимость, которая описывает рас-
пределение давления в возмущенной области около сферы для высо-
котемпературного газа. Зависимость проста в реализации и не требует 
существенных затрат вычислительных ресурсов. Анализ результатов 
показывает высокую точность предложенного метода. Зависимость 
может быть использована как самостоятельно, для целевого определе-
ния аэродинамических параметров на сферических участках состав-
ных тел [21], так и в качестве первого приближения для пакетов про-
грамм расчета параметров обтекания в рамках строгой постановки 
системы уравнений газовой динамики [22, 23, 24]. Дальнейшие работы 
в данной области планируется вести в части построения аналогичных 
зависимостей для других геометрических тел. 
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The restoration of the pressure distribution in the              
perturbed region near the sphere in supersonic gas flow 

with an arbitrary effective adiabatic index 
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D.A. Sapozhnikov 1, 2, E.G. Tonkikh 1, 2, 

1 JSC “MIC “NPO Mashinostroenia”, Moscow region, 
Reutov-town, 143966, Russia 

2 Bauman Moscow State Technical University, Moscow, 105005, Russia 
 

The generalization of the dependency which was proposed earlier for determining of the 
pressure in perturbed area streamlined by the supersonic flow of the inviscid perfect gas 
was provided. The modification allows to consider effects which occur when the sphere is 
streamlined by high temperature gas with adiabatic index which do not equal 1.4. Accord-
ing to article [2-3], made adjustment to the function which describes the behavior of the 
shock wave which depends on the adiabatic index. The Shepard function’s coefficient also 
consider of adiabatic index. First and second order members of Shepard function which 
describe a pressure in area does not change. Comparison of application versions with the 
available data calculations for the high temperature gas and approximations based on 
perfect gas shows high accuracy of the proposed approach. 
 
Keywords: supersonic flow, Shepard’s method, high temperature gas. 
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