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Рассмотрен подход решения задачи подбора состава нанокомпозитного материала 
с требуемыми характеристиками. В качестве объекта исследования выступает 
нанокомпозитный материал который состоит из однородной матрицы и включений 
в форме, приближенной к сфероидальной. Для решения поставленной задачи реализо-
ван программный комплекс, алгоритм подбора разработан на основе генетического 
алгоритма. Проведен анализ эффективности разработанного метода и зависимости 
скорости схождения метода от различных параметров. 
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Введение. Нанокомпозитные материалы, в состав которых входят 

полупроводники, металлы и другие соединения, обладают особыми 
оптическими и электродинамическими характеристиками [1]. Данное 
обстоятельство вызывает огромный интерес исследователей во всем 
мире к созданию новых функциональных материалов с заданными ха-
рактеристиками. Большое количество работ направлено на исследова-
ние слоистых структур и сред с включениями различной формы [2-5]. 
Особенностью таких исследований является огромное многообразие 
характеристик компонент, входящих в состав смеси, которые могут 
кардинально повлиять на свойства материала [6]. Что, в свою очередь, 
приводит к повышению сложности исследований нанокомпозитных 
сред.  

Особый интерес вызывает решение задачи поиска состава компо-
зитного материала с заданными характеристиками. И автоматизация 
процесса поиска является перспективным направлением, позволяю-
щем сократить сроки и издержки разработки и создания новых функ-
циональных материалов. Реализовать поиск композитного материала 
с требуемыми свойствами на заданном многомерном множестве ха-
рактеристик структуры, можно с использованием генетического алго-
ритма [7], который представляет собой эвристический подход к реше-
нию задачи поиска. Такой подход основан на математическом 
моделировании процессов в природе, таких как кроссовер, мутации, 
отбор, и позволяют находить оптимальные или приближенные к ним 
решения [8, 9]. Целью данной работы является создание программного 
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комплекса для подбора состава нанокомпозитного материала с задан-
ными характеристиками на основе генетического алгоритма.  

Математическая модель. Объектом исследования является нано-
композитная среда, состоящая из однородной матрицы с помещен-
ными в неё частицами в форме, приближенной к сфероидальной (рис. 
1). 

 
Рис. 1. Физическая модель нано-
композитной среды 

Аппроксимируя форму неоднородных частиц эллипсоидом враще-
ния, получим модель нанокомпозита с включениями в форме сферои-

дов с длинами полуосей a, 
b, c (b = c) вдоль коорди-
натных линий (рис. 2). В 
рамках теории эффектив-
ной среды такую наноком-
позитную среду можно 
рассматривать только в 
случае выполнения следу-
ющего условия: длинна 
волны внешнего электро-
магнитного поля на поря-
док превышает размер ча-
стиц по трем 
направлениям и расстоя-
ние между частицами [10]. 

Эффективную диэлектрическую проницаемость статистической 
смеси выразим используя подход Максвелла-Гарнетта [11], для смесей 
с n числом компонент в общем виде: 

( )1( )
n

e m i m
i

ie m m i m m
vε ε ε ε

ρ ε ε ε ρ ε ε ε=

− −
= ∑

− + − +
,                    (1) 

 
Рис. 2.  Модель нанокомпозитной среды ап-
проксимированных по форме частиц 
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где iv − объемная доля i − го компонента, iε , mε , eε  – диэлектрическая 
проницаемость i − го компонента, матрицы и эффективная проницае-
мость смеси, ρ  – фактор деполяризации i − го типа частиц,  

( )2

2 2

arcsin 11 1
1 1

ξ
ρ ξ

ξ ξ

 − = − − −  

 , 2 1ρ ρ+ ⊥= , a bξ = , ,a b −  длина 

полярной и экваториальной осей сфероида соответственно [12]. 
Метод решения поставленной задачи. Задача поиска состава 

нанокомпозитной матричной смеси с требуемыми характеристиками 
является оптимизационной с большим количеством параметров и не-
линейной зависимостью свойств материала от состава. В таком случае 
для решения подходят эвристические методы и в частности генетиче-
ский алгоритм. Генетический алгоритм является методом оптимиза-
ции, основанным на имитации естественного отбора и работает с ко-
нечным множеством решений, создавая новые путем использования 
«генетических» операторов скрещивания, мутации и селекции [13]. 
Количественная оценка свойств объекта задается векторами, называе-
мыми внешними, внутренними и выходными параметрами.  

Внешние параметры ( )1 2 nα α ,  α , ,α= …  воздействуют на объект 
исследования (внешнее электромагнитное поле) и задаются как кон-
стантные значения или функции. Внутренние параметры или управля-
ющие переменные 1 2 mβ (β ,  β , ,β )= …  (состав композита, форма ча-
стиц и др.) характеризуют внутреннее состояние объекта и принимают 
значения на множестве β B ∈ . Выходные параметры или качествен-
ные характеристики объекта 1 2 kγ (γ ,  γ , , γ )= …  (диэлектрическая про-
ницаемость композита) дают численную оценку свойствам объекта ис-
следования и зависят от управляющих переменных γ γ(β)= . 

Для решения оптимизационной задачи необходимо выбрать 
наилучшее решение на основе количественного показателя φ
(φ(β) σ)∈ . Где σ  является шкалой выходного параметра iγ . Выбор 
оптимального решения сводится к выбору только тех решений, кото-
рые соответствуют наименьшему значению критерия φ  

( ) ( )
β B

φ' φ β' min φ β
∈

 = = 
 

, где β'  – является оптимальным решением, 

( )φ' φ β'=  – наименьшее значение критерия в области поиска. Таким 
образом необходимо найти такую структуру композита, значение ди-
электрической проницаемости которой максимально близка к задан-
ной.  
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Наименьшей неделимой единицей вида подверженной эволюци-
онному преобразованию, является особь. В качестве особи выступает 
вариант композитного материала, который представлен вектором 
внутренних параметров или генотипом. При взаимодействии особи с 
внешней средой проявляются внешние признаки (взаимодействие 
электромагнитного излучения с композитом) или фенотип. Фенотип 
характеризует приспособленность особи, т.е. появляется критерий 
оценки отдельной особи по отношению к другим. Множество особей 
с близким генотипом образуют популяцию, ареалом служит ограни-
ченное множество поиска, на котором существуют особи.  

В общем виде генетический алгоритм состоит из нескольких клю-
чевых фаз (рис. 3). На первом этапе проводится генерация стартовой 
популяции и оценка приспособленности особи посредством вычисле-
ния целевой функции.  

Зачастую генерация 
проводится случайным об-
разом. Далее проводится 
скрещивание в популяции, 
после чего популяция уве-
личивается в численности 
(в зависимости от выбора 
механизма скрещивания, 
популяция может удво-
иться, вырасти вчетверо 
или измениться в другой 
пропорции). Новое поколе-
ние проходит фазу мутиро-
вания, т.е. меняется гено-
тип отдельных особей 
потомков в случайном ре-
жиме или по заданному ал-
горитму. На следующем 
этапе для каждой особи 
проводится анализ приспо-
собленности (делается рас-
чет целевой функции ком-
позита и определяется 
насколько полученные ха-

рактеристики близки к искомым). После чего в популяции остаются 
только самые приспособленные особи, остальные уничтожаются. 
Если на данном шаге найден композит с требуемыми свойствами, про-
цесс останавливается, иначе производится переход к шагу скрещива-
ния.  

 
Рис. 3.  Обобщенная блок-схема генети-

ческого алгоритма 
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Программный комплекс. Для подбора состава нанокомпозит-
ного материала с заданными характеристиками реализован программ-
ный комплекс на языке C++. Метод подбора реализован на основе ге-
нетического алгоритма.  

На рис. 4 изображены основные классы приложения. Класс Evolu-
tion моделирует процесс эволюции (скрещивание, мутации, отбор). 
Для возможности использования свойств материалов разработан класс 
MaterialList, который позволяет получать характеристики различных 
материалов и соединений в зависимости от длины волны внешнего 
электромагнитного излучения (данные о свойствах загружены из ис-
точника [14]).  

 
Рис. 4. Иерархия классов 

Перед запуском процесса эволюции создается генотип (класс Gen-
otype), и настраивается для текущей задачи (рис. 5). Настройка и 
управление генотипом производится при помощи класса GenotypeM-
anager. GenotypeLibrary содержит набор генотипов для различных 
композитов (структура, количество компонент, форма включений). 
После чего генерируется популяция (класс Person) и запускается про-
цесс эволюции. Для работы целевой функции разработан класс Model, 
который инкапсулирует метод расчета свойств композита и класс Al-
gorithm для реализации численных методов поиска корней полиноми-
альных уравнений с комплексными переменными.  

Численное моделирование. На результат работы генетического 
алгоритма сильно влияют различные параметры алгоритма, такие как 
численность популяции, вероятность мутаций и др. Для исследования 
влияния данных параметров проведен численный эксперимент.  

Влияние численности популяции определялось следующим обра-
зом, для каждой численности (10, 50, 100, 500 особей) генерировалось 
по 100 экспериментов со случайными характеристиками генотипа и 
одинаковой целевой функцией. Для измерений эволюция ограничива-
лась количеством итераций и на основе расчетов построен график за-
висимости среднего значения целевой функции на каждой итерации 
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(рис. 6) и графики максимального, минимального и среднего значения 
целевой функции (рис.7). 

 
Рис. 5. Структурная схема реализованного генетического алгоритма 

 
Рис. 6. Влияние численности популяции на скорость сходимости (усредненные зна-

чения) 
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а) б) 

в) г) 

Рис. 7. Влияние численности популяции на скорость сходимости: 

а – численность популяции 10; б – численность популяции 50; в –  численность популяции 100;            
г – численность популяции 500 

Для оценки влияния коэффициента мутации генерировалось по 
1000 экспериментов со случайными характеристиками генотипа и 
одинаковой целевой функцией. Для измерений эволюция ограничива-
лась количеством итераций и численностью популяции, на основе рас-
четов построены графики максимального, минимального и среднего 
значения целевой функции (рис.8). 

Из графиков видно, что сильное влияние на скорость сходимости 
генетического алгоритма оказывает численность популяции. Высокая 
численность позволяет охватить наибольший ареал вариантов реше-
ний и произвести больше расчетов за итерацию. Коэффициент мута-
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ции напротив, не оказал заметного влияния на расчеты. Это обуслов-
лено прикладной задачей и конфигурацией генотипа особи. Данная за-
дача отличается очень малым количеством генов, следствием чего яв-
ляется отсутствие зависимости от коэффициента мутации.  

а) б) 

в) г) 

Рис. 8. Влияние коэффициента мутации на скорость сходимости: 

а – оэффициент 1E-5 10; б – коэффициент 1E-4; в –  коэффициент 1E-3; г – коэффициент 1E-2 

Заключение. В работе приведен алгоритм решения задачи поиска 
состава композитного материала с заданными характеристиками, на 
примере нанокомпозитной среды, состоящей из однородной матрицы 
с помещенными в неё частицами в форме, приближенными к сферои-
дальной. Метод расчета основан на генетическом алгоритме, который 
является методом оптимизации и имитации естественного отбора. Для 
решения поставленной задачи разработан программный комплекс и с 
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его помощью проведен анализ влияния численности популяции и ко-
эффициента мутации на скорость сходимости метода.  

Работа выполнена при финансовой поддержке РФФИ в рамках 
научного проекта №18-32-00025. 
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Simulation of the characteristics of a nanocomposite 
material with spherical inclusions  
using the genetic algorithm 

© S.P. Romanchuk, S.A. Korchagin, D.V. Terin 

Yuri Gagarin State Technical University of Saratov, Saratov, 410054, Russia 
 
The approach of solving the problem of selecting the composition of a nanocomposite ma-
terial with the required characteristics is considered. As an object of research is a nano-
composite material that consists of a homogeneous matrix and inclusions of a spheroidal 
shape. To solve this problem, a software package is implemented, the selection algorithm 
is developed based on the genetic algorithm. The efficiency of the developed method and 
the dependence of the rate of convergence of the method on various parameters are ana-
lyzed. 
 
Keywords: mathematical simulation, nanocomposite materials, genetic algorithms, software 
complex 
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