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Рассмотрена математическа� модель распространени� одномерных нелинейных
волн в насыщенных жидкостью пористых средах где имеет место диссипаци�
энергии обусловленна� межкомпонентным трением Доказана теорема суще
ствовани� и единственности классического решени� динамической задачи поро
упругости Представлена разностна� схема дл� решени� этой задачи Приведены
результаты численного моделировани� распространени� сейсмических волн дл�
пробной модели среды

�лючев�е слова: нелинейное одномерное движение упругопориста� среда дисси
паци� энергии двухскоростной континуум численный алгоритм вычислительный
эксперимент

�ведение В средах с твердыми и жидкими компонентами послед-
ние перемещаются по-разному, т. е. присутствует относительное дви-
жение. В связи с этим возникает необходимость в рассмотрении меха-
ники и термодинамики неоднородной (гетерогенной) среды [1–7]. 
В ряде работ рассматриваются математические модели распростране-
ния сейсмических волн в насыщенных жидкостью пористых средах на
основе линейных моделей типа Френкеля — Био [1, 2]. В статье [3] 
представлен вывод гидродинамических уравнений для классических
сред. В работе [4] дан вывод уравнений гидродинамической модели с
двумя жидкостями двухфазных носителей, представлен подробный
анализ проблем, связанных с математическими свойствами получаю-
щихся систем уравнений. 

В отличие от рассмотренных ранее линейных моделей в настоя-
щей работе исследуемая модель движения многофазной среды осно-
вана на законах сохранения, последовательном определении сил и
потоков, разработанных Л.Д. Ландау при описании гидродинамики
с двумя скоростями сверхтекучего гелия [8]. При использовании это-
го подхода достаточно выполнять только общие физические принци-
пы — законы сохранения и принцип относительности Галилея. 
В данной статье сформулирована математическая модель одномерно-
го нелинейного движения рассматриваемой среды. Доказана теорема
существования и единственности поставленной задачи. Приведено
численное решение одной модельной задачи.  

Математическа� модель Пусть сквозь поры упругодеформиру-
емого тела (с парциальной плотностью const)r = движется жид-
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кость (с парциальной плотностью const).r = �зменением темпера-

туры пренебрегаем. Рассмотрим одномерное движение вдоль оси

Через s обозначим напряжение упругодеформируемого тела. Пред-
положим, что модуль сдвига упругодеформируемого ( )m = m и ко-

эффициент трения между фазами ( ).c = c - Тогда систему одно-

мерных уравнений пороупругости [9] можно записать в виде

2

2

( );

( ) ;

( ),

�r = s -r - c -
��
s = m�
�
r = r - c -��

где ,  — скорости эластичного пористого тела и жидкости с плот-

ностью 0(1 )r = r -  и 0r = r соответственно; ,r �  — 

физическая плотность эластичного пористого тела и жидкости

соответственно; 0  — пористость; .
�

=
�

Постановка одномерной нелинейной пр�мой задачи поро
упругости Тензор напряжений из упомянутой системы удобно ис-
ключить. Рассмотрим следующую одномерную начально-краевую
задачу для нелинейной системы уравнений и пороупругости относи-
тельно скоростей и :

2( ) ( ) , (0, ), (0, );r = m -r - c - � �     (1) 

2 ( ), (0, ), (0, );r = r - c - � �                 (2) 

0
( ),

=
= j

0
( ),

=
= y

0
0,

=
= (0, )� (3) 

0
0, ( ) ( ), (0, );

= =
= m = �                             (4) 

Здесь : [0, ] ,� : 0, ,�  1 : [0, ] .� Предположим, что

( )m  — три раза непрерывно дифференцируемая положительная

функция, а ( )c  — два раза дифференцируемая непрерывная поло-

жительная функция. 
Нелинейное волновое уравнение (1) (в идеальном случае) возни-

кает во многих задачах, например в случае колебания струны, когда
коэффициент упругости зависит от деформации. Многие механиче-
ские модели пористой среды, учитывающие рассеивание энергии, 
предполагают коэффициент трения (проницаемость) зависящим от
разности скоростей [10, 11]. 
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В данном случае рассмотрим классическое решение начально-
краевой задачи (1)–(4): 

3,2 [0, ] [0, ] ,� � 0,1 0, 0, ,� �� �� �

где , [0, ] [0, ]�  — пространство раз непрерывно диффе-

ренцируемых по и раз непрерывно дифференцируемых по
функций. 

Задача определения и из задачи (1)-(4) с известными �,  χ ,  

,r r называется одномерной прямой динамической задачей для

пористой среды. 
Допустим, что выполнены следующие условия: 

3
0 (0, ),� 2

1 (0, ),� 2 (0, )�                 (5) 

и условия совместности

1
0(0) ( ),- �m =% o 1

1(0) ( )-
�

�m =% o  

на правой границе

1 2
0 1 0 0(0) ( ) ( ) ( ) ( ) ( )-

� ��
� �� �r m = m -r -r c c� �% %% %o     (6) 

и на левой границе

0 1 0 1(0) (0) (0) (0) 0.�� ��= = = =                         (7) 

Пусть ( ) ( ),m = m%  ( ) ( ).c = c% Введем класс функций

0, | ( ) , ( ) , (

выполнены услови

) ,

я (6)

[0, ];
( )

� �� ��m c� m � m m � c � " �� �
= � �
� �

% %% % %
    (8) 

для некоторых положительных констант 0 ,m . Далее через обо-

значим положительную константу, большую, чем предыдущая :

3 2(0, ), (0, ) | (0) 0, (0) 0 ,= m� c� m = c =% %% %             (9) 

где 0.>
Обратим внимание на то, что в приложениях часто расчет пара-

метров ведется строго монотонно возрастающими и гладкими функ-
циями. Эти условия удовлетворены в области определения ( ) и

пространстве , определенных формулами (8), (9). Для эффективно-

го решения исходной начально-краевой задачи сделаем предположе-
ние о гладкости параметров рассматриваемой модели. 
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Теорема Предположим, что достаточно мало, а достаточно
большое. Кроме того, имеют место условия (5)–(7), а множество

( ) определено формулой (8). 

Тогда для любого , ( )m c�%% начально-краевая задача (1)–(4) име-

ет единственное решение 3,2 ([0, ] [0, ]),� � 0,1([0, ] [0, ]).� �

Замечание Подобный результат сохраняется для однородных
неймановых условий, когда вместо граничных условий Дирихле на
левой границе 0=  (4) задается условие отсутствия натяжения. 

В доказательстве правильности (см. ниже) граничных условий
для ,= =% имеем

( ) ( ), (0, ),
=

m = �%

0 0, (0, ).= = �

Функции , в зависимости от , % определяются следующими

формулами: 

0 0 0

2

0 0

1
( , ) ( , ) ( ( )) (0, )

( ) ( ) (0, ) ,

t

t

= x x + m h h t +
r

r
�+ r c - c - h h t

r

� � �

� �

%

% %

0 0

( , ) ( , ) ( ( ))(0, ) .= x x +r c - h h� � %%

Данная система является замкнутой нелинейной системой интегро- 
дифференциальных уравнений Вольтерры второго порядка по при
фиксированном .

Доказательство теоремы Обозначим функции ,=
(

 .=
(

Дифференцируя обе стороны системы (1)–(2) относительно , полу-

чим для ,
( (

систему уравнений

2

22

( ( ) ) ( )

( ) ( ) , ( ), (0, ), (0, );

� �r = m -r c - -

� �-r c - -r c - - � �

( ( ( (
%%

( (
% %

   
(10)

( )( ), (0, ), (0, ).�= r c - - � �
( ( (

%                 (11) 

Предположим, что на левой границе дано однородное нейманово
условие (см. замечание). Тогда, используя условие (4), получим
граничные условия
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0
( ) 0, (0, ),

=
�m = �
( (

%

( ) ( ), (0, )
=

m = �
(
%

или

0
0, (0, );

=
= �

(
                                  (12) 

1( ( )), (0, ).-

=
= m �

(
%                            (13) 

Начальные условия имеют вид

0 0 10
( ), = ( ), 0, ;= =

�= �
( (

                     (14) 

0
0, (0, ).

=
= �

(
                                  (15) 

Для того чтобы показать, что решение нелинейной начально-
краевой задачи существует, приведем уравнение (10) к стандартному
виду с помощью гладкого преобразования переменных [12], используя
уравнения характеристических кривых

( )
( ) ( ( ), ) / .�= � m r
) )

Введем в рассмотрение новую функцию  [12]: 

( , ) ( , ) ( , ), ( , ) ( , ) .= j +y j -y
(

            (16) 

Здесь � , , ,y  удовлетворяют системе

( ) / 0;�j + m r j =%                                (17) 

( ) / 0.�y - m r y =%                                (18) 

После простых преобразований система уравнений (10)–(11) 
относительно ,

(
 примет вид

( )( );�= r c - -
( )

%                                (19) 

2
11 1

8
zz hh h z

� �r c
- = + + + +� �� �r y� �

% %

% % % %

2 2
1 21 1

( ),
8 4

h z

� �r rc c
+ - - - + -� �� �r j r j y� �

% % (
% %% % %

 (20) 

где ( ) / ;�= m r
(% % 1 ( );�c = c -%

2
2 ( ) ( ) .� �c = c - -r c -% %
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Для того чтобы показать, что это преобразование переменных яв-

ляется регулярным из класса 2 на достаточно малом интервале

(0, ), при условии 2,�
) 1,�

)
рассмотрим детерминант матри-

цы Якоби

( ) / ( )
det det

( ) / ( )

� ��j +y - m r j -yj +y j +y� �
� �= =� � � �j -y j -y �j -y - m r j +y� � � �

(
%
(

%

4 ( ) / .�= - m r j y
(

%                                    (21) 

Покажем, что этот якобиан отличен от нуля: 

0,y �  0.j �

�з соотношения (18) для � имеем

( , ) 1, (0, ) ,t t x = x = x

( , ) ( )( ( , ), ( , ) / , (0, ) 0,t �t x = - m t x t x r x =
(

%             (22) 

( , ) 0, (0, ) .ty t x = y x = x

Отсюда

( , ) , ( , )t x = t+ x y t x = x                                (23) 

для 0, (0, ) 0.t � x = x � Дифференцируя второе соотношение систе- 

мы (23), получаем

1 ( ( ) / ).x x x x �= y = y +y = y + m r
(

%                  (24) 

Отсюда имеем � 0.� Аналогично можно доказать, что � 0.�

Следовательно, якобиан преобразования отличен от нуля. 

Ограниченность | |y выполняется до тех пор, пока ( , )x t x �

( )( ( , ), ( , ) / .�� - m t x t t + x r
(

% Это справедливо для всех , таких, 

что t = -x меньше, чем некоторое 0,>% которое может зависеть

только от 1.
(

Продифференцируем второе соотношение системы (22) по пере-

менной .x Получим относительно x обыкновенное дифференциаль-

ное уравнение первого порядка с нулевым данным Коши. Сведем эту
задачу к решению интегрального уравнения. Проводя очевидные
оценки и используя неравенство Гронуолла, имеем соотношение
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2

2

( , ) 1 / ( ( ( , ), )) / ,
r

x �t x � - < r � m t x t+ x r
(

%        (25) 

справедливое для
1

2 ln( / 1)
.

r r +
t � =% (

Аналогично можно доказать ограниченность всех производных
функций j и y  до второго порядка включительно [13].  

Согласно теореме об обратной функции, существование решения
2,2 ,�

( 0,1�
(

задачи (10)–(15) следует из существования решения
2,2 ,� 0,1�

(
задачи (18)–(19) с преобразованными начальными

и граничными условиями. Для доказательства существования реше-
ния системы (18)–(19) используем теорему Банаха [14, 15]. Опреде-
лим неподвижную точку оператора 1 2( , ),= отображающего

функции 2,2 ,� 0,1�
(

в решение 1( , ) ,=
(

2 ( , ) ,=
(

из

соотношений

2
11 1

8
zz hh h z

� �r c
- = + + + +� �� �r y� �

% %

% % % %

2 2
1 21 1

( );
8 4

h z

� �r rc c
+ - - - + -� �� �r j r j y� �

% % (
% %% % %

   (26) 

, ( )( )= r c - -                                   (27) 

с преобразованными начальными и граничными условиями. Отметим, 
что правые части зависят от ,

)
не только линейно относительно

,h z+  ,h z- но и нелинейно через ( ) / ,�= m r
(% % 1 ( )�c = c -%

и ,j  .y Оператор является сжимающим для малых значений

(0 )< � в силу ограниченности правых частей соотношений (26), 

(27) по норме 2,2 , 0,1| .| || �з этого следует, что существование

решения 3,2 ,� 0,1� нелинейной начально-краевой задачи (1)–(4) 

и, следовательно, согласно

0

( , ) ( , ) ,= x x�
(

0 0

( , ) ( , ) ( ) (0, ) ,= x x+r c - t t� �
(

%
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существует решение 2,2 ,�
( 0,1�

(
начально-краевой зада- 

чи (10)–(15). Единственность можно доказать стандартным образом, 
применив теорему из [14, 15] для системы

1
2 1 2

0

1
2 2 2 1 1 2 2

0

ˆ ( )

( ) ;

� �
r = m + - q q -� �

� �
� �

� �
- r c - + - - + q q� �

� �
� �

�

�

)
%

%

1
2 2 1 1 2 2

0

ˆ ( )= r c - + - - + q q� %

с однородными начальными и граничными условиями для разностей

решений 1 1, и 2 2, .

Теорема доказана. 
�исленное решение задачи Предположим, что коэффициенты

постоянны, и при ( ) 0, ( ) sin , ( ) 0,j = y = = = p получено реше-

ние начально-краевой задачи (1)–(5): 

sin
cos sin sin ( )cosx x� �� �- x

= - x h + h + h h + x - h +� �� �
h� �� �

sin
cos sin ,x� �� �- x

+ cr - h + h� �� �
h� �� �

sin
cos sin .x� �� �- x

= cr - h + h� �� �
h� �� �

Здесь постоянные , , ,x h  выражаются через характеристики пори-

стой среды. При исчезновении пористости исчезает и скорость насы-
щающей жидкости. 

Положим в начально-краевой задаче (1)–(5) 0 1( ) 0, ( ) sin ,= =

а временной сигнал в источниках зададим в виде импульса Пузыр�ва: 

2
0 0

0 02

2  ( )
( ) exp sin 2  ( ) ,

� �p -
= - p -� �� �g� �

где 4;g = 0 1=  Гц; 0 1,5=  с. 

В качестве модели зададим среду, состоящую из однородного по-
ристого слоя с поглощением. Физические характеристики слоя при-
мем следующими: 
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Физическая плотность жидкости, ,r г/см3  ...................................  1,0 

Скорость распространения поперечной волны

в упругой среде, , км/с  ...........................................................  1,3 

Пористость,   ...................................................................................  0,1 
Коэффициент трения, ,c см3/(г·с)  ...................................................  1000 

Для численного решения полученной задачи используем явную
разностную схему второго порядка аппроксимации с соответст- 
вующими шагами дискретизации по времени ( )t и по пространст- 

ву ( )  [16, 17]: 

1 1 1 1
1 12 2

1 1
2

2

+ - - -
+ +

�- + = m +m - -�t r

1 1 2 1 1 1
1 1

1
,- - - - -

- -
� � �- m +m - - r - c - - c� � �tr

1 1 1( ) , 0, ..., , 0, ...,+ + += r t - c + = =

с аппроксимацией начальных и краевых условий

1 0
0

0

0

0, sin( ),

0, 0, ..., ,

0, 0, 0, ...,

-
= =

t

= =

= = =

Полагаем число Куранта меньшим 0,5, что обеспечивает устой-
чивость принятой разностной схемы.  

Рис Расчетные сейсмотрассы для скорости смещений
для однородного пористого слоя
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Рис Расчетные сейсмотрассы для скорости смещений
для однородного пористого слоя с источником возбуждения

Результаты численных расчетов волнового поля для заданной
модели среды представлены на рис. 1, где приведены сейсмотрассы
волнового поля для скорости смещений ; видно, что с расстоянием

волна затухает. На рис. 2 источник возбуждения находится внутри
пористого слоя (20 км). Волна распространяется в обе стороны от ис-
точника с одинаковой скоростью, а отражается от правой границы
в силу специфичности граничного условия. 

Заключение Рассмотрена математическая модель одномерного
нелинейного движения насыщенной жидкостью пористой среды, 
учитывающая межфазное трение, когда модуль сдвига пористой
твердой фазы зависит от градиента смещения. Поставленная одно-
мерная нелинейная прямая задача пороупругости решена функцио-
нальным методом. Приведена найденная в результате численных
расчетов сейсмотрасса волнового поля для скорости смещений для
модельной задачи. �з полученных данных следует, что с расстояни-
ем волна затухает. В случае, когда источник возбуждения находится
внутри пористого слоя, установлено, что волна распространяется в
обе стороны от источника с одинаковой скоростью, при этом отража-
ется от правой границы в силу специфичности граничного условия.  

Работа выполнена при частичной финансовой поддержке Мини
стерства инновационного развити� Республики Узбекистан грант
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