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Предложена зависимость для распределения давления в возмущенной области око-
ло сферы, обтекаемой потоком сверхзвукового невязкого газа, полученная при мо-
дификации метода обратного средневзвешенного расстояния. При получении за-
висимости использовались известные соотношения для давления на теле и ударной 
волне, а также данные численных экспериментов. Проведено сравнение результа-
тов с данными, не использованными в процессе обучения коэффициентов зависи-
мостей, что подтверждает высокую достоверность полученной модели. 
 
Ключевые слова: метод Шепарда, сверхзвуковое течение, многопараметрическая 
регрессия 
 

Введение. За годы развития экспериментальной и вычислительной 
аэродинамики скопилось большое количество данных, описывающих 
течения около различных аэродинамических компоновок [1–3]. 
В настоящее время эти данные используются для верификации и вали-
дации предлагаемых моделей [1]. Однако их можно использовать не 
только для проверки адекватности моделей, но и при создании новых 
методов определения параметров обтекания. В данной работе предло-
жен метод, моделирующий распределение давления в возмущенной 
области около сферы, построенный на основе имеющихся зависимо-
стей для давления на теле и волне, частичного анализа табличных дан-
ных и гипотезах о влиянии давления с поверхности тела и ударной 
волны на давление в ударно-волновом слое. Для аппроксимации ис-
пользован модифицированный метод Шепарда (метод обратного сред-
невзвешенного расстояния) [4–6]. Простую зависимость, полученную 
на основе реальных данных, можно использовать для самостоятель- 
ных оценок параметров обтекания в широком диапазоне чисел Маха 
и встраивать ее в программные комплексы для задания начальных зна-
чений искомых параметров в расчетной области. 

Цель работы — определение зависимости, аппроксимирующей 
распределение давления в возмущенной области около сферы. 

Модификация метода Шепарда. Рассмотрим простейшую фор-
му метода обратного средневзвешенного расстояния [6]: 
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Здесь iy  — узловое значение приближаемой функции; iw  имеет 

смысл веса, убывающего при удалении от узла; ( , ) ix x  — евклидово 

расстояние от узловой точки до текущей; k  — показатель степени, 
определяющий характер поведения полинома. 

В таком виде у метода есть ряд недостатков. Так, в узлах интер-
поляции производная его основного соотношения равна нулю [7, 8], 
а метод не позволяет точно улавливать характер поведения функции. 
Рассмотрим, к примеру, распределение давления по мере удаления от 
тела (по нормализованной координате )  при различных значениях 
центрального угла   при числе Маха, равном 1,5 [3] (рис. 1). 

 

Рис. 1. Распределение давления при М 1, 5  и значениях 
центрального угла :  

 — 5;  — 30;  — 50;  — 70;  — 90 

 
По приведенным на графике (см. рис. 1) данным видно, что 

наклон функции при 0   (вблизи тела) и 1   (около волны) отли-
чен от нуля, — эти значения будем использовать при построении ап-
проксимирующего полинома Шепарда.  

Также из графика мы можем сделать предположение о квадра-
тичном изменении функции вблизи тела и линейном изменении 
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вблизи волны [9]. Тогда мы можем модифицировать аппроксимиру-
ющую функцию (1) и записать ее в следующем виде: 
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Обратим внимание на то, что в узлах интерполяции знаменатель 
весовой функции обращается в нуль, и поправим функцию с учетом 
этого факта: 
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Определим значения некоторых коэффициентов 1,F  2F  функций. 

Значение   на теле равно нулю, поэтому можем записать 
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где индекс  b  показывает принадлежность точки к телу. 
Определим коэффициент C  по зависимости, описывающей рас-

пределение давления по сфере. Согласно работе [1], давление 0/ P P  

на поверхности сферы от точки торможения и до отрыва потока рас-
считывается по формуле 
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где 
**

1 1
;

3 / 2

 


    
k    — угол между осью абсцисс и вектором 

скорости в произвольной точке на поверхности сферы; **  — поло-

жение звуковой точки на поверхности сферы [10]; / 2;    
1, 4   — показатель адиабаты Пуассона. 

Связь этого соотношения с давлением / ,P P  которое использует-

ся в наших рассуждениях, можно установить по формуле Релея: 
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Соответственно, коэффициент C  можно определить как 
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Коэффициент B  определим из разностного аналога производной 
около тела: 
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Значения B  определим ниже из двупараметрической регрессии 
на основе имеющихся данных. Аналогично найдем значения коэф-
фициентов 2:F  
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где индекс s  соответствует ударной волне и значению 1;   

1

P

P
 определяется из соотношений Ренкина — Гюгонио [2] при из-

вестном наклоне ударной волны (об отходе ударной волны будет ска-
зано ниже). 

Коэффициент ,D  так же как и ,B  определим из двупараметриче-
ской регрессии как функцию числа Маха и центрального угла. Не-
определенным остается коэффициент .A  Найдем его значение с по-
мощью минимизации функционала метода наименьших квадратов  
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Минимум функционала может быть найден с высокой точностью 
с помощью любого метода нулевого порядка. 

Определение коэффициентов взвешиваемых функций. По 
имеющимся данным построим регрессии, описывающие поведение 
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B  и D  как функций от числа Маха и центрального угла .  Исклю-
чим из выборки, полученной по табличным данным [3], все значения 
давления, соответствующие каждому второму числу Маха и нечет-
ным значениям центрального угла .  Эти данные будем использо-
вать для верификации регрессии. Искать зависимости будем в виде  

3 2

3 2

(M, ) (M) (M) (M) (M),

(M, ) (M) (M) (M) (M).

         

         
B B B B

D D D D

B

D
            (6) 

Здесь и далее углы   измеряются в градусах, чтобы не исказить 
малые коэффициенты при высоких степенях регрессии. 

Рассмотрим подробнее процесс построения регрессии [11, 12] на 
примере коэффициента .B  При построении будем использовать дан-
ные для чисел Маха, равных 1,5, 4, 8, 20, исключив из выборки, соот-
ветственно, числа Маха 2, 6, 10. Исключим также данные, соответ-
ствующие значениям 5, 15, 25, 35, 45, 55, 65, 75 угла .  Выберем, 
к примеру, данные для числа Маха, равного 20, и аппроксимируем их 
полиномиально (рис. 2). Исключенные данные отложим для верифи-
кации модели. 

 

Рис. 2. Сравнение аппроксимирующих полиномов второй ( ), 
третьей ( ) и четвертой ( ) степеней соответственно, по-
строенных  по  значениям  коэффициента B  ( ) при М 20;   —  

исключенные данные 
 
Полином третьей степени достаточно хорошо аппроксимирует 

искомую функцию при заданном числе Маха (см. рис. 2). Полином 
четвертой степени лучше описывает поведение искомой функции, но 
процесс его отыскания сложнее, потому ограничимся предположени-
ем о кубическом изменении коэффициента B  по центральному углу. 
Построим кубические зависимости для каждого из неисключенных 
чисел Маха (рис. 3). Получим четыре соотношения вида (6) с че-
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тырьмя разными наборами коэффициентов ,B  ,B  ,B  .B  Рас-

смотрим подробнее коэффициент .B  

Отметим на графике полученные B  при различных значениях 

числа Маха. По характеру их размещения можно заключить, что за-
висимость (M)B  (а также коэффициенты ,B  ,B  )B  носит квад-

ратичный характер.  

 

Рис. 3. Зависимость (M):B  

 — узловые значения;  — квадратичная аппроксимация 

 
Построив квадратичные аппроксимации для каждого коэффици-

ента, можно записать следующие соотношения: 
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4 2 4 4
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Подставив их в систему (6), получим окончательное соотношение 
для определения коэффициента .B  Следует, однако, проверить, опи-
сывает ли построенная регрессия настоящее изменение параметра ,B  
или же просто повторяет узловые значения (так называемое переобу-
чение). Для этого обратимся к данным, не участвовавшим в построе-
нии модели. Возьмем значения B  для числа Маха, равного 10, и ис-
ключенных значений центрального угла, и построим на одном 
графике полученную зависимость и отложенные данные (рис. 4). 
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Рис. 4. Сравнение полученной регрессии ( ) с исключенными 
данными ( ) при М 10  

 
Регрессия, в построении которой не участвовали отложенные 

данные, хорошо описывает их (см. рис. 4). Следовательно, можно 
сделать вывод о том, что модель достоверно описывает .B  Опреде-
лим коэффициенты второго уравнения системы (6): 

6 2 6 7

4 2 4 5

4 2

2

= 2,3409625 10 M 1,1093017 10 M 2,5939363 10 ,

2,8811573 10 M 2,0172379 10 M 6,3008946 10 ,

9,7615728 10 M 0,0047502M 0,008349

–

–

–

–
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Таким образом, удалось определить зависимости для двух из трех 
коэффициентов в интерполяционной функции. Зависимость для тре-
тьего коэффициента сложно сформулировать из практических сооб-
ражений, поэтому вопрос его получения рассмотрим отдельно. 

Определение коэффициента А. Для того чтобы построить ап-
проксимацию искомого давления модифицированным методом 
Шепарда, необходимо определить еще один коэффициент .A  Можно 
было бы найти его так же, как коэффициенты B  и ,D  исходя из вто-
рой производной по   вблизи тела, однако данные довольно разре-
жены, — такой способ может не соответствовать действительности. 

Вместо этого определим коэффициент A  как функцию от числа 
Маха и центрального угла   по тому же набору данных, что и для 
коэффициентов B  и ,D  из решения задачи минимизации функцио-
нала метода наименьших квадратов 
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где 
 i

P

P
 — известные узловые значения; ( )if  определяется соот-

ношением (3). 
Необходимо найти такое значение ,A  которое доставляет мини-

мум функционалу для всех (M,  )  из выборки. Затем, следуя той же 
методике, что и для коэффициентов ,B  D  (6), построим регрессию 
для :A  

7 2 7 6

4 2 4 4

4 2

2

6,2324673 10 M 9,5658655 10 M 2,2713325 10 ,

1,0672898 10 M 2,4028788 10 M 6,0210992 10 ,

2,8202221 10 M 0,0087692M 0,00753

–

– –

–

– – –

06,

0,1939579M 0,1312538M 0,3101295.
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A
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A

 

Вид полинома, описывающего ,A  соответствует (6). 
Открытым остается вопрос определения отхода ударной волны от 

тела. Известно [13], что отход ударной волны на критической линии 
зависит от числа Маха гиперболически. Предположим, что и отход 
ударной волны вдоль других радиальных направлений зависит от 
числа Маха гиперболически: 

( )
(M, ) ( ).

M 1


   

w
F

r G                                  (7) 

Здесь (M, )wr  — отход ударной волны от тела по радиальному 

направлению в зависимости от значения числа Маха и центрального 
угла ,  вычисляемый в долях радиуса сферы. Зависимости ( ),F  

( )G  можно построить исходя из данных, приведенных в работе [3], 
как и для коэффициентов выше по аналогии с формулами (6): 

8 4 6 3 4 22, 238353 10 2,340217 10 1, 4520624 10

0,001233 0, 25641

( )

14,

           
 

F

9 4 7 3 5 2

4

7,6110835 10 7,0587313 10 5,0361929 10

4,8618782

(

10 1,10 605.

)
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

   

 

      



G
 

Зная отход ударной волны от тела, можно легко вычислить ее 
наклон в конкретной точке и определить давление на поверхности 
ударной волны, используемое в формуле (5), из соотношений Ренки-
на — Гюгонио [2, 14]. 

Анализ результатов. Вычислив все параметры модели, сравним 
данные, не принимавшие участие в обучении модели [3], с результа-
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тами, полученными с помощью модифицированного метода Шепарда 
с обученными коэффициентами (рис. 5). Возьмем для примера число 
Маха, равное 10 (см. рис. 5). На рисунке линиями обозначены ре-
зультаты, полученные с помощью модели, точками — данные, не 
принимавшие участия в построении модели. 

 

Рис. 5. Сравнение полученной зависимости с не исполь-
зовавшимися при обучении модели табличными данны-
ми  при  М 10   и  ,  равном  5  ( , ),  25 ( , ), 

45 ( , ), 65 ( , ) и 85 ( , ) 
 
Из графика (см. рис. 5) видно, что модель достаточно точно по-

вторяет распределение давления при тех параметрах, на которых мо-
дель не обучалась. Средняя относительная погрешность не превыси-
ла 1 % от измеряемых величин [15]. 

Заключение. Полученная модель адекватно описывает распреде-
ление давления в ударном слое около сферы и согласуется с данными 
численных экспериментов, которые не были использованы при ее по-
строении. Описанный метод построения зависимости на основе име-
ющихся данных прост в применении и обладает высокой точностью. 
Расчет давления по полученному соотношению не требует существен-
ных временных затрат, в отличие от точных вычислительных моделей, 
что показывает целесообразность дальнейшего обобщения имеющихся 
в открытом доступе результатов экспериментов и точных расчетов. 
Описанные преимущества метода позволяют использовать его как са-
мостоятельно для таргетированного определения аэродинамических 
характеристик летательных аппаратов [16], так и в качестве прибли-
жения для высокоточных методов [17]. В дальнейшем авторы плани-
руют адаптировать зависимость для реальных высокотемпературных 
газов [18, 19], что расширит область применимости модели. 
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Simulation of the pressure distribution in the disturbed 
region near the sphere streamlined by the inviscid flotation 

by means of the machine learning methods 
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1JSC “MIC “NPO Mashinostroyenia”, Reutov, Moscow region, 143966, Russia 
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The article introduces a dependency for the pressure distribution in the disturbed region 
near the sphere streamlined by the flow of the supersonic inviscid gas, obtained when 
modifying the Shepard’s Method. We use known ratios for the pressure on the body and 
the shockwave as well as data from the numerical experiments. We have compared the 
results with the data not used in the learning process of the dependency coefficients. This 
comparison proves high confidence of the model obtained. 
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