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Рассмотрены внутренние (колебания топлива в баках) и внешние (определение 
присоединенных масс и моментов инерции) задачи нестационарного взаимодей-
ствия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде 
граничных интегральных уравнений. Приведены формулы эффективного решения 
указанных задач методом граничных элементов применительно к телам вращения 
и примеры расчетов. 

Ключевые слова: потенциальные течения, гидродинамические силы, присоединен-
ные массы и моменты инерции, метод граничных элементов. 

 
Имеются важные технические приложения гидромеханики, в ко-

торых математическая модель безвихревых течений идеальной не-
сжимаемой жидкости дает удовлетворительные результаты. Такими, 
в частности, являются задачи определения нестационарных сил на 
поверхности ЛА, движущихся в воде с небольшими скоростями 
[1−6], а также задачи определения возмущающих сил на корпус жид-
костного ЛА, вызванных малыми колебаниями топлива в баках [7, 8]. 

В указанных задачах в области 3,  занятой жидкостью, поле 
скоростей v  удовлетворяет одновременно условиям несжимаемости 
и потенциальности течения: 

 0, grad ,div   v v  (1)  

где   — потенциал скоростей жидкости. Следовательно, в области   
потенциал   должен удовлетворять уравнению Лапласа 

 0.  (2)  

 Дополняя уравнение (2) подходящими условиями на границе об-
ласти  , получаем классические задачи теории потенциала [1–10]. 

В рассматриваемых задачах для вычисления сил, моментов сил, 
действующих на конструкцию со стороны жидкости, и инерционных 
характеристик жидкости (присоединенных масс и моментов инерции) 
требуется знать решение (потенциал   и его нормальную производ-
ную) только на границе расчетной области. Поскольку применительно 
к задачам для уравнения Лапласа имеются эквивалентные формули-
ровки в виде граничных интегральных уравнений (ГИУ) [9], привлека-
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тельным методом решения таких задач является метод граничных эле-
ментов (МГЭ) [4, 5,11−16]. 

Решение задач для уравнения Лапласа методом граничных 
элементов. Пусть рассматривается некоторая задача для уравнения 
Лапласа в области 3,   границей которой является поверхность .S  

Условимся (рис. 1), что единичная нормаль  Mn  к поверхности S  в 

точке M S  будет внешней по отношению к области   для внутрен-
них задач ( )   и внутренней по отношению к области   для внеш-
них задач ( ).   

Рис. 1. Геометрия внешней и внутренней задач: 
а — поверхность ЛА; б — бак с топливом 

 
В [9] решения граничных задач Неймана, соответствующих зада-

нию на поверхности S  нормальной производной  ,N

S

f
n





 пред-

ставлены в виде потенциалов простого слоя 

        1
.s

MPS

M P dS P
r

    (3)  

 Решения граничных задач Дирихле, соответствующих заданию 

на поверхности S  самой функции   ,D
S

f   представлены в виде 

потенциалов двойного слоя (для внешних задач к потенциалу двой-
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ного слоя добавляется еще источник, центр которого не принадлежит 
множеству S ) 

    
     1

,d

MPS

M P dS P
n P r

  
     

  (4)  

где M  — произвольная точка области  ; P  — точка интегрирова-
ния по поверхности ;S  MPr  — расстояние между точками M  и .P   
В дальнейшем точку M  условимся называть точкой наблюдения, 
точку P  — точкой интегрирования (по поверхности S ). 

Функции (3) и (4) определены на всем пространстве. Потенциал 
простого слоя — непрерывная функция, а потенциал двойного слоя 
при переходе через поверхность S  изменяется скачком, причем его 
предельные значения и прямое значение (случай M S ) связаны 
между собой соотношениями типа формул Сохоцкого [9]. 

Требование удовлетворения граничным условиям приводит к 
граничным интегральным уравнениям: 

      
         1 1 1

2 2
s s N

MPS

M P dS P f M
n M r

  
       

  (5)  

для задач Неймана и 

      
         1 1 1

2 2
d d D

MPS

M P dS P f M
n P r

  
      

   (6)  

для задач Дирихле [9], причем верхний знак относится к внутренним 
задачам, нижний знак — к внешним. 

Из перечисленных четырех задач (рассматриваемых в простран-
стве 3)  внутренняя задача Неймана либо не имеет решения, либо ее 
решение определено с точностью до константы. Соответствующее 

однородное ГИУ (5) имеет одну собственную функцию     ,N P  

определяющую потенциал Робэна, 

          1
,R N

MPS

M P dS P
r

      

где     1R M   при .M S   Союзным к ГИУ (5) для внутренней 

задачи Неймана является ГИУ (6) для внешней задачи Дирихле. Соб-
ственная функция соответствующего однородного уравнения есть 

  1D   (при   1d   имеем 
   1

2
MPS

dS P
n P r

  
    

 ). Это дает не-

обходимое и достаточное условие разрешимости внутренней задачи 
Неймана [9]: 
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       0.N D N

S S

f dS f dS     (7)  

Остальные три задачи разрешимы единственным образом при 
любой правой части. При этом ГИУ для внешней задачи Неймана и 
внутренней задачи Дирихле союзны между собой, не имеют соб-
ственных функций, а потому также разрешимы единственным обра-
зом при любой правой части [9]. В общем случае решение внешней 
задачи Неймана стремится на бесконечности к нулю обратно про-
порционально расстоянию от начала координат. При выполнении 
условия (7), которое в данном случае не является условием разреши-
мости, решение стремится на бесконечности к нулю обратно пропор-
ционально квадрату расстояния или быстрее. 

Несколько другой подход к решению граничных задач для урав-
нения Лапласа основан на формуле Грина [9−15] ( ):M S  

       1 1

2 MPS

M P dS P
n P r

  
      

   

 
     1 1

0.
2 MPS

P dS P
r n P




   (8)  

 Для задач Неймана имеем отсюда ГИУ 

       1 1

2 MPS

M P dS P
n P r

  
       

  

      1 1
.

2
N

MPS

f P dS P
r


   (9)  

 В формулах (8), (9) верхний знак соответствует внутренним за-
дачам, нижний — внешним задачам. Уравнение (9) для внешней за-
дачи аналогично ГИУ (6) для внутренней задачи Дирихле, а потому 
всегда единственным образом разрешимо. Уравнение (9) для внут-
ренней задачи аналогично ГИУ (6) для внешней задачи Дирихле. По-
скольку в силу свойств потенциала Робэна 

 

           

           

1

1

N N

PPS S

N N

PPS S

P dS P f P dS P
r

f P dS P P dS P
r

 

  

 

 





 

 
  

                ,N R N

S S

f P P dS P f P dS P          

его условие разрешимости совпадает с условием (7). 
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Для того чтобы решить ГИУ с достаточной точностью, необхо-
димо обеспечить подходящую аппроксимацию поверхности S  объ-
единением граничных элементов (ГЭ), аппроксимацию искомых и 
известных функций на ГЭ и численное интегрирование по ГЭ потен-
циалов простого и двойного слоя. 

Многие ЛА и топливные баки жидкостных ЛА являются телами 
вращения. Рассмотрим контур C , получаемый пересечением поверх-
ности S  произвольным меридиональным сечением. Интегральное 
уравнение каждой из рассматриваемых здесь задач, заданное на по-
верхности ,S  может быть преобразовано в интегральное уравнение, 
заданное на контуре .C  Хотя расчетные формулы усложняются, име-
ется выигрыш в размерности задачи. В частности, более наглядными 
получаются результаты расчетов. Ограничимся этим случаем. 

Рассмотрим прямоугольную 1 2 3Ox x x  и цилиндрическую Or z  си-

стемы координат (см. рис. 1). Контур C  выберем в меридиональном 
сечении 0.  Ориентацию контура C  выберем так, чтобы нормаль 
n  к поверхности S  при положительном направлении обхода контура 
оставалась справа. Начальную точку контура C  совмещаем с нача-
лом координат .O  Контур C  будем задавать параметрическими 
уравнениями 

    ; ,C Cr r s z z s   (10)  

где s  — длина дуги, отсчитываемая от точки .O  Для компонент 
нормали имеем тогда соотношения 

   ;r Cn z s         .z Cn r s  (11)  

Решения   рассматриваемых задач, как будет показано далее, 
имеют специальный вид, так что 

 
           

           

0 0

1 1

, , , , , ;

, , , , , ,

r z r z r z

r z r z r z
n

       


     

 (12)  

где     — известные функции простого вида. Поэтому достаточно 

располагать точки наблюдения M  на контуре .C  Их положение будет 
определяться значением длины дуги ,s  где  0; ,Cs L  CL  — полная 

длина контура. Точки P  интегрирования по поверхности S  будем за-
давать угловой координатой  0; 2   соответствующего меридио-

нального сечения и длиной дуги   вдоль контура, являющегося сле-
дом поверхности S  в этом сечении. Следовательно, цилиндрическими 
координатами этих точек будут значения   ,Cr    Cz   и .  
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Элемент поверхности в точке P  можно определить как dS   

  .Cr d d    Тогда потенциалы простого и двойного слоя в ГИУ 

можно записать следующим образом: 

 

         

           

, 0,1

2
0,1 ,

0

,

, ,

d s

S

d s
C

C

K M P P dS P

r d K s d


 

         



 
   

        , 0,1, ,d s

C

K s d       (13)  

где  

          0,1 0,1 , ;C Cr z          1
, ;s

MP

K M P
r



     
1

,d

MP

K M P
n P r

  
    

; 

                  , , ,, , , , , , , ;d s d s d s
C C C CK s K r s z s r z K M P        

  

           
2

, ,

0

, , , .d s d s
CK s r K s d



       

   
 Основное интегральное соотношение (9) в результате преобразо-

вания к контурному интегрированию принимает следующий вид: 

             0 01
0 ,

2
d

C

s K s d      
 

   

        11
, 0.

2
s

C

K s d   
 

  (14)  

 Явные формулы для выражений     и  ,d sK  будут приведены 

ниже. 
К уравнениям вида (14) МГЭ применяется следующим образом. 

Контур C  разбиваем точками деления 0 1 10 ... N N CL        
на N  гладких дуг, которые и будут ГЭ. Точки наблюдения jM  вы-

берем в центрах ГЭ:  1 2 10,5 ,j j j      где 0 1.j N    Выписы-

ваем соотношения типа (14) для каждой точки наблюдения: 
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           
1

0 0
1/2 1/2

0

1
0

2

N
d

j kj k
k

I


 


     
    

      
1

1
1/2

0

1
0,

2

N
s

kj k
k

I





  
   (15)  

где 

 

             

     
1

1
,, 0,1 0,1

1/2 1/2
0

, ,
1/2

, ;

, .
k

k

N
d sd s

j jj k
kC

d s d s
jj k

K d I

I K d




 







      

   








 (16)  

 Соотношения (15) образуют систему N  линейных алгебраиче-
ских уравнений (с плотной несимметричной матрицей), решаемую 
методом исключения Гаусса [17, 18]. Коэффициенты (16) вычисляем 
по квадратурным формулам, например по формулам Гаусса наивыс-
шего порядка точности [12, 19]. 

Расчет присоединенных масс и моментов инерции ЛА. Пусть 
тело конечных размеров движется по произвольному закону в без-
граничной идеальной несжимаемой жидкости. Свяжем с телом пря-
моугольную систему координат 1 2 3Ox x x , а ее начало выберем в каче-
стве полюса (рис. 1, а). Скорость полюса OV  и угловую скорость   
вращения точек тела вокруг полюса разложим по ортам ie  связанных 

осей:   ,O i iV tV e    .i it e  Тогда потенциал скоростей безотрыв-

ного течения, вызванного движением тела, имеет вид [1, 2, 4, 20, 21] 

          
3

1 2 3 1 2 3 3 1 2 3
1

, , , , , , , ,j j j j
j

x x x t x x x V t x x x t


          

где потенциалы j  и 3j  удовлетворяют краевым задачам ( j = 1, 2, 3): 

 

 

3

3

0 ;

;

0 ;

.

j

j
j

S

j

j
j

S

n

n



 



 


 



 


  



n e

r n e

 (17)  
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 Все эти потенциалы называют единичными. Первые три из них 
описывают течение жидкости, вызванное поступательным движением 
тела с единичной скоростью в направлении координатной оси ,jOx  а 

остальные три потенциала описывают течение жидкости, вызванное 
вращением тела с единичной угловой скоростью вокруг оси .jOx  По-

скольку  
3 \

grad 1 0,
S

dS dS


  n


 
3 \

rot 0,
S

dS dS


    r n r


 единич-

ные потенциалы и составной потенциал убывают на бесконечности не 
медленнее обратной величины квадрата расстояния. Попутно заметим, 
что отсюда следует разрешимость внутренних задач (17), которыми 
воспользуемся далее при описании возмущенного движения топлива в 
баках. 

Основные величины, характеризующие возмущенное движение 
жидкости в целом как механической системы, в частности, главный 
вектор и главный момент действующих на ЛА гидродинамических 
сил, кинетическая энергия жидкости, выражаются через параметры 
движения ЛА и коэффициенты 

 ж ,j
i j i j i

S
n


   

  (18)  

называемые коэффициентами присоединенных масс [1, 2, 20]. 
Для тела вращения (см. рис. 1) орты цилиндрической системы 

координат выражаются через векторы ie


 следующим образом: 

 
2 3

2 3

1

cos sin ;

sin cos ;

.

r

z



   
   


e e e

e e e

e e

  

 Кроме того, справедливы следующие выражения для радиуса-
вектора r  произвольной точки пространства и для вектора n  норма-
ли к поверхности тела: 

;r zr z r e e  ;r r z zn n n e e    .r zz n r n   r n e  

Используя данные формулы, получим следующие выражения для 
правых частей краевых задач (17): 

    1
1 1 ;r r z z z z Cn n n n r s

n

       


n e e e e    

    2,3
2,3 2,3 2,3

cos cos
;

sin sin
r r z z r Cn n n n z s

n

                   
n e e e e    

    4
1 0;r z zz n r n

n



      


r n e e e   
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    5,6
2,3 2,3r zz n r n

n



      


r n e e e   

      
sin sin

.
cos cos

r z C C C Cz n r n z z s r r s
                   

   

 Из вида правых частей и из выражения оператора Лапласа в ци-
линдрических координатах 

 
2 2 2

2 2 2 2

1 1j j j j
j

r rr r z

      
    

  
   

вытекают следующие выражения для единичных потенциалов: 

 

   
   
   
 
   
   

1 1

2 2

3 2

4

5 6

6 6

, , , ;

, , , cos ;

, , , sin ;

, , 0;

, , , sin ;

, , , cos .

r z r z

r z r z

r z r z

r z

r z r z

r z r z

  
   
   
  
   

   

 (19)  

Подстановка полученных выражений в формулы (18) дает сле-
дующее обобщенное выражение: 

      
2

ж

0 0

sin cos ,
C

i j

L

i j j i i jd f s ds


           

где показатели степени i  и i  принимают значения либо нуль, либо 
единица. Отсюда легко видеть, что лишь следующие коэффициенты 
присоединенных масс будут отличны от нуля: 

 

   

   
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z r s ds

   

   

        

  

        

    













 (20)  
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Итак, для вычисления коэффициентов (20) надо решить краевые 
задачи для потенциалов 1,  2  и 6.  В формулах (12)–(14) для по-

тенциала 1  имеем   1,    а для потенциалов 2  и 6  имеем 

  cos .     Интегрирование по угловой координате   в формуле 

(13) сводится к вычислению эллиптических интегралов [19, 22], для 
которых известны простые аппроксимации [23]. Соответственно это-
му имеем: 

        
1

1

2

1/2

0

1
,s

j C
MP

K r d
r



 
          

           ППС 1/2 1 22 , , ,C C j C j C Cr K r z r z        ; 

          
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,d

j C
MP

K r d
n P r



 

  
         

    

               ПДС 1/2 1/22 , , , , , ;C C j C j C C C Cr K r z r z r z              
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           ППС 1/2 1/22 , , , ;C C j C j C Cr r z r z            
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              ПДС 1 2 1/22 , , , , , ,C C j C j C C C Cr r z r z r z            

  
где [4, 15, 19, 22] 
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Для вычисления значений  1,2,6 1 2j   составим СЛАУ 
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где 0 1j N    и коэффициенты 
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вычисляем по приведенным выше выражениям (с использованием 
стандартных квадратурных формул и аппроксимаций для эллиптиче-
ских интегралов). 
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В качестве простого примера найдем потенциалы обтекания и ко-
эффициенты присоединенных масс тела вращения, состоящего из пе-
редней полусферической части радиуса R  и цилиндрической части 
длины L  (см. рис. 1, а). Параметрические уравнения такой поверхности 
задаются соотношениями, представленными в табл. 1. Результаты рас-
чета функций 1,2,6  в зависимости от длины дуги приведены на рис. 2 

(распределения единичных потенциалов 1,2,6  при 0).  Расчетные 

значения коэффициентов присоединенных масс приведены в табл. 2 в 
сравнении с вычислениями по методу плоских сечений (МПС) [4, 20]. 

Таблица 1 

Параметрические уравнения контура ЛА ( (1 0, 5 ) )CL R L     

s   Cr s   Cz s  Cr s  Cz s  
0 s R   s  0  1 0  

R s R L   R  s R 0  1 

CR L s L  
 

cos
s R L

R
R

  
 
 

 

sin
s R L

R
R

  
 
 

sin
s R L

R

    
 

cos
s R L

R

  
 
 

 
 

Рис. 2. Изменения единичных потенциалов вдоль образующей тела  
вращения (от хвоста к носку, 1R , 1L , 100 ГЭ): 

 1 —  потенциал φ1; 2 —  φ2; 3 —  φ6 

Таблица 2 
Пример расчета коэффициентов присоединенных масс тела вращения 

Размеры тела 1, 1R L   1, 9R L   

Метод расчета МГЭ(100 ГЭ) МПС МГЭ (200 ГЭ) МПС 

11 ж   2,924  – 3,326  – 

22 ж 33 ж     2,826  5,236  26,515 30,37  

26 ж 35 ж     2,190 4,886  127,94  149,7 

66 ж 55 ж     1,999  5,835 776,88  975,2  
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Расчет гидродинамических коэффициентов, характеризую-
щих силовые и инерционные свойства жидкости при поперечных 
колебаниях в топливных баках ЛА. В задаче о малых поперечных 
колебаниях топлива в баках жидкостных ЛА (см. рис. 1, б) частью 
общей границы S  жидкого объема   служит твердая стенка топ-
ливного бака (обозначим ее I ),S  а остальная часть границы — это 
свободная поверхность жидкости (обозначим ее II ).S  Основной ма-
тематической моделью в инженерных расчетах является модель иде-
альной несжимаемой жидкости. 

В полете бак совершает (благодаря работе системы управления) 
малое возмущенное движение относительно некоторого заданного 
(программного) движения. Строго говоря, на каждую жидкую части-
цу действует сила земного притяжения, на частицы зеркала топлива 
действует давление наддува бака, на частицы, контактирующие со 
стенками бака, действует давление их взаимодействия. Но характер-
ное время возмущений движения бака на несколько порядков больше 
времени распространения волн давления в объеме топлива. Стенки 
бака не препятствуют движению жидкости в поле тяготения (условно 
говоря, бак свободно падает вместе с топливом). Поэтому при отсут-
ствии возмущений, т. е. при программном движении, достаточно рас-
сматривать жидкость в предельном состоянии покоя относительно 
бака и считать, что ее свободная поверхность, так называемое зерка-
ло топлива, перпендикулярна оси бака. Этому состоянию соответ-
ствует плотность массовых сил 

1 1,x gw е  где g  — ускорение си-

лы тяжести; 
1x  — продольная перегрузка ЛА. Поперечное возму-

щенное движение бака приводит к колебаниям топлива в баке отно-
сительно этого положения покоя, т. е. в том же поле массовых сил. 

За исключением переходных процессов, вызванных внезапными 
возмущениями, и явлений резонанса возмущенное движение топлива 
в баке сопровождается малыми перемещениями u  частиц относи-
тельно положения равновесия. Тогда движение жидкости удобнее 
описывать потенциалом перемещений Охоцимского   [7, 8], т. е. 
вместо соотношений (1), (2) использовать соотношения 

 div 0;u   grad ; u   0,   (21)  

причем t v u  и .t   
С программным движением бака будем связывать семейство непо-

движных («абсолютных») систем координат 1 2 3.O x x x     Для связанной 

системы координат сохраняем прежнее обозначение 1 2 3.Ox x x  При от-

сутствии возмущений система 1 2 3Ox x x  совпадает с актуальной (соот-
ветствующей данному моменту времени) абсолютной системой. 
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С точностью до малых второго порядка поперечное возмущенное 
движение точек бака можно охарактеризовать вектором перемеще-
ний 
 ,O  U U r  
  
где    2 2 3 3O U t U t U e e  — смещение полюса O  относительно его 

невозмущенного положения ;O     2 2 3 3t t e e  — вектор по-

ворота бака на малый угол; r  — радиус-вектор точек бака в связан-
ных осях. Тогда условие непротекания на смоченной поверхности 
бака IS  принимает вид: 

    2 2 3 3 2 3 1 1 3 3 1 2 2 1 .U n U n x n x n x n x n
n


       


U n    

На поверхности II ,S  аналогично классическому подходу, приня-
тому в теории малых гравитационных волн на поверхности жидкости 
[25], ставятся динамическое условие, соответствующее известному 
давлению в газовой подушке над зеркалом топлива, и кинематиче-
ское условие, определяющее возмущенное положение зеркала. При-
менительно к рассматриваемому случаю основное соотношение, по-
лучаемое в результате линеаризации указанных граничных условий и 
исключения высоты 

II
1 0

S
x     подъема зеркала топлива над 

невозмущенным уровнем, имеет вид [7, 8, 25] 

 
1

2

2
1

0.

II

x

S

g
xt

  
 


   

 Для малых возмущенных движений бака и топлива абсолютная и 
относительная производные по времени [1, 2, 26] отличаются на ве-
личины второго порядка малости, поэтому их различием будем пре-
небрегать. 

Таким образом, требуется найти решение следующей внутренней 
краевой задачи 

    

1
II

2 2 3 3 2 3 1 1 3 3 1 2 2 1

2 2
1

0 ;

;

0.

IS

x
S

n U n U n x n x n x n x n

t g x


       

       

 (22)  

 В отличие от задачи обтекания ЛА, которая привела к краевым 
задачам (17) для единичных потенциалов, зависящих только от 
внешней геометрии тела, решение задачи (22) зависит не только от 
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внутренней геометрии бака, но и от текущего уровня топлива ,H  
снижающегося по мере выработки, а также от «предыстории» коле-
баний зеркала топлива. 

При фиксированном уровне топлива соответствующая задаче (22) 
однородная задача (отличие состоит в условии 

I
0)

S
n    является 

задачей на собственные колебания. Имеется счетное множество соб-
ственных частот колебаний n  и соответствующих им собственных 

функций  1 2 3, , ,n x x x  которые находят, решая задачу на собствен-

ные значения: 

 I

1
II

1 1 2
1

0 ;

0 ;

0.

S

x
S

n

x g



 


  

     

 (23)  

 Функции n  нормируют условием  норм1 1n Q
x    в некоторой 

фиксированной точке  норм
I II ,Q S S   и вместе с функцией 0 1   

они образуют полную ортогональную систему в области   [7, 8]. 
Общее решение однородной задачи (22) и соответствующая ему 

форма свободной поверхности топлива имеют вид: 

           одн 1 2
1 2 3 1 2 3

1

, , , cos sin , , ;n n n n n
n

x x x t A t A t x x x




         

           
II

одн 1 2
2 3 1 2 3

1

, , cos sin , ,n n n n n
S n

x x t x A t A t x x




           

где    
1II

1 1 2
2 3 1 2 3, , , ,n n x n nS

x x x g H x x         — собственные 

формы колебаний зеркала. Функции n  удовлетворяют условию 

 норм 1n Q
   и вместе с функцией 

II
0 1

S
   образуют полную ортого-

нальную систему на поверхности IIS  [7, 8]. 
Разложение произвольной функции ,f  определенной на поверх-

ности II ,S  в обобщенный ряд Фурье по системе n  имеет вид 

 2
1

,n n

nn

c
f

N






    

где 
II

,n n

S

c f dS   
II

2 2
n n

S

N dS   [7, 8]. 
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Положим I IIS S S   и рассмотрим краевые задачи (17) как внут-
ренние задачи для потенциала перемещений (заведомо разрешимые с 
точностью до постоянной). Для индексов 2, 3j   соответствующими 

«единичными» потенциалами являются 2,3 2,3x   и 3j j    (реше-

ния задачи Жуковского) [7, 8]. Функция 

        неодн

2,3 1
j j j j n n

j n

U t x t s t


 

          (24)  

является гармонической и удовлетворяет неоднородному граничному 
условию задачи (22). Подставим ее в граничное условие этой задачи 
на поверхности II ,S  где 1 ;x H  1;n e  1 .n x     При этом учтем, 
что 

 

   

 
 

 
 

II1

1 3 3 1 3

1 2 2 1 2

2 2
,

3 3

II
IIII

j j
j jS S

SSx n

x n x n j x j

x n x n j x j

 
       

 

      
          

r n e e r n

  

и воспользуемся разложениями 

 
 

ж 2
1

;
j

n n
j

nn

x
N





 
     

 
ж 2

1

,
j

nOn
j

nn N





 
      

где 

  

II

ж ;j
n j n

S

x dS         

II

ж .j
j nOn

S

dS     (25)  

 Имеем: 

        1

II

неодн
2

2,3 1
II

x n
j j j j nSS nj n

g
U t x t s t



 

                

          11 2
ж 2

1 2,3

;jj x
n n j j n nOn

nn j

g
N U t t s t


 

 

              
      

  

 

   

     

II II
1 12,3 1

2 3 3 2
1

j
j n n

j nS S

n n
n

t s t
x x

t x t x s t



 






    

 

     

 


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          3 21 2
ж 2 3

1

;n n n n n
n

N t t s t


 



           

  

 

               

 

1

1

3 2
2 3

2,3

2
ж 2

2 0.

jj
n j j x n nOn

j

x n
n n n

n

U t t g t t

gN
s s



             

 
  



  


 

Отсюда получаем обыкновенные дифференциальные уравнения 
для функций  :ns t  

 
         

       
1

2

2,3

3 2
2 3 ,

jj
n n n n n j jOn

j

x n n

s s U t t

g t t



       
 

       

  
 (26)  

где 

 1

2
ж

2
.x n

n
n

gN 
 


   

 Таким образом, если функции  ns t  удовлетворяют уравнениям 

(26), то функция  неодн  является решением задачи (22). 

Величины ,n   j
n  и  j

On  называют соответственно обобщенны-

ми массами и коэффициентами гидродинамических силы и момента, 
соответствующих n-й форме колебаний топлива в баке. Через эти ко-
эффициенты и присоединенные моменты инерции 

  
ж

j j
jO

S

J dS
n


 

  (27)  

выражаются главный вектор и главный момент гидродинамических 
сил, действующих на смоченную поверхность бака, кинетическая 
энергия колебаний топлива и другие величины, характеризующие 
жидкость как механическую систему. 

Таким образом, основные характеристики воздействия на бак со 
стороны колеблющегося топлива находят из решения (для каждого 
уровня заполнения бака) задачи на собственные значения (23) и 
внутренних задач Неймана (17) для потенциалов 2,3.  Первостепен-

ное значение имеет первый тон антисимметричных колебаний, при 
которых зеркало топлива сохраняет плоскую форму [8]. Остальные 
формы колебаний часто не учитывают. 
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Рассмотрим бак в форме тела вращения. Тогда потенциалы 2,3,  

соответствующие потенциалам 5,6  в формулах (19), можно выбрать 

в виде 

    2,3
sin

, , , .
cos

r z r z
 

      
  (28)  

 Строго говоря, следует полагать ,j j jC    где j  есть правая 

часть формулы (28), а jC  — произвольные константы. Нетрудно ви-

деть, что появятся слагаемые  j jC t в решении (24) и  j jC t  во вто-

ром граничном условии задачи (22). Через функции j  определяются 

присоединенные моменты инерции (27) и коэффициенты  j
On  (вторая 

из формул (25)). Вектор перемещений u  и, в частности, форма свобод-

ной границы  
II

неодн
1

S
x   от произвольных констант не зависят. 

Из выполнения условий разрешимости для внутренних задач (17) 
следует независимость присоединенных моментов инерции от :jC  

   .j j j j
j j j j j

S S S S

dS C dS C dS dS
n n n n

   
      

      


     

Ввиду равенств 

 II II II I
1

0;

n n n n
n

S S S S S

n
n

S

dS dS dS dS dS
x n n n

dS dS
n 

   
     

   


   



    

 
  

II II II II

j n j n j n j n

S S S S

dS dS C dS dS              

определение коэффициентов  j
On  и, следовательно, функций  ns t  

уравнениями (26) также не содержит произвола. 
Наконец, появление слагаемых вида  j jC t  в условии на сво-

бодной границе просто подчеркивает тот факт, что для внутренних 
задач потенциал скоростей/перемещений остается определенным (из 
вторых по счету уравнений (1) и (21)) лишь с точностью до произ-
вольной функции времени. При постановке внешних задач (в 3 ) 
этот произвол обычно устраняется условием стремления потенциала 
к нулю на бесконечности. 
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С помощью МГЭ функция  ,r z  находится на контуре C  ме-

ридионального сечения области   аналогично функции  6 , ,r z  

только в формулах (14) и (15) надо брать верхние знаки. В результате 
имеем СЛАУ  0 1j N    

          
1/2

6 6

1 1

1/2 1/2
0 0

1 1
.

2 2 k

N N
d s

j j C C C Cj k j k
k k

I I z z r r


 

    

       
      

 Заметим, что неоднозначность решения исходной граничной за-
дачи и соответствующего ГИУ была устранена выбором решения в 
виде (28). Присоединенный момент инерции вычисляем, используя 
аналогию между выражениями (18) и (27). Тогда по последней из 
формул (20) имеем 

      2,3 2 2ж

0

.
2

CL

C COJ z r s ds
        

При решении МГЭ задачи (23) на собственные значения ограни-
чимся расчетом антисимметричных тонов. В этом случае собствен-
ные функции n  имеют вид 

    
sin

, , , ,
cos

n r z r z
 

      
 (29)  

где sin   соответствует колебаниям в плоскости 1 3,Ox x  а cos  соот-
ветствует колебаниям в плоскости 1 2.Ox x  Нас интересует нахожде-

ние функций   на контуре C . Рассмотрение второго случая оставля-
ет точку наблюдения M  в сечении 0   и не требует вывода новых 
формул, связанных с интегрированием по угловой координате. 

Соответственно внутренней задаче, выберем в ГИУ (14) верхние 

знаки, а также положим   cos .     На поверхности IS  0,n

n





 а 

на поверхности IIS  
1

2

.n n
n n

xn g

 
  

 
 Следовательно, согласно обо-

значениям (12), имеем      0     на всем контуре ,C     1 0    

на части I IC C S   и      
1

2
1 n

x g


    


 на остальной его части 

II II.C C S   Тогда 

              
6 61 II

21
, , 0.

2 2
d s

xC C

s K s d K s d
g 


         

       
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 В результате дискретизации МГЭ получаем однородную СЛАУ 

          
6 61

1 12

1/2 1/2 1/2
0

1
0,

2 2
I

N N
d s

j j jj k j k
xk k N

I I
g

 

  
  


        

    (30)  

где IN  — число ГЭ на части IC  контура .C  Задача определения ре-
шения СЛАУ (30) есть обобщенная задача на собственные значения и 
решается стандартными численными методами линейной алгебры 
[16, 17]. 

Рассмотрим в качестве примера расчет гидродинамических ха-
рактеристик колебаний топлива в баке со сферическим днищем ради-
усом ,R  боковой цилиндрической поверхностью того же радиуса и 
уровнем топлива H  (см. рис. 1, б). Параметрические уравнения кон-
тура C  задаются соотношениями, представленными в табл. 3. Ре-
зультаты расчета функций   (для трех тонов антисимметричных ко-
лебаний) и   приведены на рис. 3. Расчетные значения гидродина-
мических коэффициентов даны в табл. 4. Отметим, что эти коэффи-
циенты мало отличаются от точных значений для цилиндрического 
бака [8], рассчитанных при тех же условиях 1,R   2.H   

Таблица 3 

Параметрические уравнения контура C ( (0, 5 )CL R H    

s   Cr s   Cz s   Cr s  

0
2

R
s


   sin

s
R

R
 1 cos

s
R

R
  
 

 cos
s

R
 

1
2 2

R
s R H

      
 

 
R  

1
2

s R
   

 
 

0  

1
2

CR H s L
     

 
 

CL s  H  1  

 

 
Рис. 3. Изменения функций  и  вдоль контура меридионального сечения 
области, занятой топливом ( 1;R  2;H   180 ГЭ): 
 1 —  γ, первый тон; 2 —  γ, второй тон; 3 —  γ, третий тон; 4 — точка нормировки; 

5 — ϒ
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Таблица 4 

Коэффициенты, характеризующие колебания топлива  
по трем антисимметричным тонам, и присоединенный момент  
инерции для бака осесимметричной формы (R = 1, H = 2, 180 ГЭ) 

Тон (n) 
Гидродинамические коэффициенты 

n  n  On  1
1 1 2

nx g    J  

1  0,6063  0,9284  1,437  1,834  
7,141  2  0,2879  0,1114  0,2019  5,335 

3  0,1853 0,04379  0,08234  8,548  

 
Выводы. С единых позиций представлено применение метода 

граничных элементов для расчета присоединенных масс ЛА и гидро-
динамических коэффициентов, характеризующих малые колебания 
топлива в баках ЛА. Проанализированы особенности постановки 
граничных задач и соответствующих граничных интегральных урав-
нений. Формулы, приведенные в работе, удобны для инженерных 
приложений. 
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The article considers inner and outer problems of non-stationary interaction between 
aircraft body and incompressible ideal fluid and statement of the problems in the form of 



Моделирование внутреннего и внешнего нестационарного взаимодействия… 

99 

boundary integral equations. By inner problems we mean vibration of fuel in tanks and 
by outer problems we mean determination of additional masses and moments of inertia. 
We provide formula of efficient solutions for these problems by the boundary element 
method as applied to bodies of revolution and examples of calculations. 

Keywords: potential flow, hydrodynamic forces, additional masses and moments of iner-
tia, boundary element method. 
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