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Предложен метод численного решения обратных трехмерных задач восстановления 
полей нагрузок, действующих на композитные элементы конструкций, на основе 
известной информации об их перемещениях на некоторой поверхности. Задачи дан-
ного типа возникают при создании систем встроенной диагностики перемещений 
конструкций и интеллектуальных композитных конструкций. Восстановленное поле 
нагрузок, действующих на части внешней поверхности композитной конструкции, 
используется для расчета напряженно-деформированного состояния и прогнозиро-
вания ресурса конструкции. Предложенный метод базируется на альтернирующем 
алгоритме решения обратных задач восстановления нагрузок в задаче теории упру-
гости и методе конечного элемента для решения прямых задач теории упругости. 
Рассмотрен пример решения обратной задачи восстановления нагрузок, воздей-
ствующих на элементы конструкций из слоисто-волокнистых композиционных ма-
териалов. 
 
Ключевые слова: численное моделирование, обратные задачи восстановления 
нагрузок, композитные конструкции, метод конечных элементов 

 
Введение. В последнее время становится более актуальным реше-

ние обратных задач механики деформируемого твердого тела вслед-
ствие растущего интереса к проблемам создания методов и средств 
диагностики повреждаемости конструкций, идентификации характе-
ристик материалов в конструкциях [1–6]. Сравнительно недавно стали 
уделять больше внимания еще одному классу обратных задач механи-
ки — задачам восстановления нагрузок, действующих на те элементы 
конструкции, в которых предполагается известной информация о пе-
ремещениях, измеряемых на некоторой части поверхности конструк-
ции [7–13]. Определение нагрузок (главным образом, давления), дей-
ствующих на конструкцию, позволяет прогнозировать долговечность 
и ресурс конструкций непосредственно в процессе эксплуатации, что 
имеет особое значение для композитных элементов конструкций [14, 
15]. Методы решения обратных задач восстановления нагрузок пред-
ложены в работах [9–11, 13].  

Цели настоящей работы — развитие альтернирующего метода 
решения обратных задач для дифференциальных уравнений [11, 16] 
с использованием метода конечных элементов для решения прямых 
задач механики композитных конструкций, а также его применение 
для восстановления нагрузок, действующих на элементы лопасти не-
сущего винта вертолета [17, 18].  
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Постановка обратной задачи восстановления нагрузок. Сфор-
мулируем постановку обратной задачи механики деформируемого 
твердого тела применительно к расчету силовых факторов, действую-
щих на композитные элементы конструкции в процессе эксплуатации, 
которую запишем в безразмерном виде [19]:  
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Система (1) состоит из уравнений равновесия, соотношений Ко-
ши, обобщенного закона Гука, граничных условий на поверхностях 

  и S  конструкции и условий на внутренней поверхности u  

конструкции. Здесь введены следующие обозначения: /    jj x  — 

оператор дифференцирования по декартовым координатам; ij  — 

компоненты тензора напряжений; ij  — компоненты тензора дефор-

маций; ju  — компоненты вектора перемещений; ( )ijkl mC x  — компо-

ненты тензора модулей упругости, который полагается различным 
для разных элементов конструкций, т. е. зависящим от координат ;ix  

    S u  — вся поверхность конструкции; in  — компоненты 

вектора нормали к поверхности; V  — вся область конструкции. Тен-
зоры модулей упругости имеют по 21 независимой компоненте [15, 
16]. Методика расчета компонент тензора модулей упругости для 
композитов описана в работах [20–24]. 

В задаче (1) известны: компоненты ijklC  тензора модулей упруго-

сти; компоненты ejS  вектора усилий; компоненты elu  вектора пере-

мещений на части S  конструкции; компоненты 2iS  вектора усилий 

на части 2  поверхности конструкции; перемещения eiU  на поверх-

ности u  во внутренней части V  конструкции. 

В задаче (1) неизвестны: компоненты ij  тензора напряжений; 

компоненты ij  тензора деформаций; компоненты ju  вектора пере-
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мещений в области ;V  компоненты 1iS  вектора усилий на части 1  

поверхности конструкции. 
Задача (1) относится к классу граничных обратных задач механики. 

Основные обозначения поверхностей, на которых заданы известные и 
неизвестные функции, показаны на рис. 1. Будем полагать, что поверх-
ность ,u  где заданы перемещения, разделяет область V  всей кон-

струкции на подобласти 1V  и 2V  (см. рис. 1), каждая из которых содер-

жит по одной поверхности 1  и 2  соответственно. 

 

Рис. 1. Схематичное обозначение граничных условий 
в обратной задаче 

 
Альтернирующий метод решения задачи (1). Введем обозна-

чение для дифференциальных операторов: 

( ).  i j ijkl k lLu C u                                       (2) 

Построим итерационный алгоритм решения задачи (1), используя 
альтернирующий метод решения задач для дифференциальных уравне-
ний в частных производных [16]. 

На нулевой итерации рассмотрим задачу в области 2:V  
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В задаче (3) заданы все граничные условия на всех границах об-

ласти 2 ,V  где 2 2 .    u S  

После решения этой задачи находим перемещения (0)
iu  и напря-

жения (0)ij  в области 2 ,V  в том числе и на поверхности ,u  которая 

также является частью границы области 1.V  Обозначим вектор 

напряжений (0) (0) ij j uin S  на части поверхности ,u  составленный 

после решения задачи нулевой итерации. 
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Теперь сформулируем задачу первого приближения в области 1:V  
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где (0)
1iu  — некоторое начальное приближение неизвестного вектора 

перемещений 1.iu  

Эта задача, как и задача нулевого приближения, является кор-
ректной и может быть решена стандартными методами, например 
методом конечных элементов. После решения задачи первого при-

ближения находим перемещения (1)
iu  и напряжения (1)ij  в области 1,V  

в том числе и на поверхности .u  

Рассмотрим задачу второго приближения в области 1:V  
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После решения этой задачи находим перемещения (2)
iu  и напря-

жения (2)ij  в области 1,V  в том числе и на поверхности 1,  являю-

щейся частью границы области 1.V  

Образуем задачу третьего приближения в области 1:V  
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Задача (6), как и задача второго приближения (5), является кор-
ректной и может быть решена стандартными методами.  

Далее алгоритм повторяется до достижения заданной точности. 
Для решения прямых задач (3)–(6) был применен метод конечных 

элементов с использованием программного обеспечения на платфор-
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ме SMCM, разработанного в Научно-образовательном центре «Су-
перкомпьютерное инженерное моделирование и разработка про-
граммных комплексов» МГТУ им. Н.Э. Баумана. 

Результаты численного решения обратной задачи восстановле-
ния нагрузок для элементов конструкций лопасти несущего винта 
вертолета. Разработанный алгоритм решения обратной задачи приме-
нялся для восстановления элемента композитной панели, содержащей 
фрагмент усиливающей жесткости, нагруженный продольной растяги-
вающей нагрузкой. Панель выполнена из слоисто-волокнистого компо-
зита (углепластика) со схемой армирования [0/90/+45/‒45]. Фрагмент, 
усиливающий жесткость — трехслойная пластина, обшивки которого 
состоят из углепластика, также со схемой армирования [0/90/+45/‒45]. 
Заполнитель образован сотовыми структурами. 

На рис. 2 показана компьютерная 3D-модель композитной пане-
ли, на рис. 3 — конечно-элементная сетка для этой панели. 

 

Рис. 2. 3D-модель композитной панели с фрагментом, 
усиливающим жесткость 

 

Рис. 3. Конечно-элементная сетка для композитной панели 
с фрагментом, усиливающим жесткость 

 
Была рассмотрена задача растяжения композитной панели про-

дольной нагрузкой. Неизвестной в задаче (1) предполагалась вели- 
чина S растягивающего усилия 1( )  i iS S  на торцах панели 1.  На 

нижней поверхности фиксировалось нормальное перемещение 3 0,u  

остальные части поверхности   композитной панели были свободны 
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от нагрузок. Поле перемещений eiU  считалось известным на некото-

рой глубине от верхней поверхности u  (см. рис. 2) элемента панели. 

Числовые значения eiU  задавались путем предварительного решения 

прямой задачи о продольном растяжении панели осевым усилием 

1  i iS S ( 0,1S  МПа). 

Геометрические размеры панели:  
Длина, L , м .............................................................................................  1,6 
Ширина, мм ..............................................................................................  0,6 
Толщина, мм 

без усиливающего жесткость фрагмента  .........................................  7 
с усиливающим жесткость фрагментом  ...........................................  15 

Обшивки трехслойного усиливающего жесткость фрагмента и ос-
новной части композитной панели представляли собой четырехслой-
ный пакет из материалов СМ-12026 (углы армирования 0° и 90°) и СМ-
42020 (углы армирования 45° и ‒ 45°) со связующим Dion 12026. В ка-
честве сотового заполнителя в усиливающем фрагменте был выбран 
алюминиевый. Упругие свойства углепластика для основной части 
композитной панели и обшивок усиливающего фрагмента панели при-
ведены в табл. 1, упругие свойства указанного заполнителя — в табл. 2. 

Таблица 1 

Упругие свойства углепластика для основной части композитной панели 
и обшивок усиливающего фрагмента панели 

1
,E  

ГПа 
2
,E  

ГПа 
3
,E  

ГПа 
12

,G  

ГПа 
13

,G  

ГПа 
23

,G  

ГПа 
12
  

13
  

23
  

47,752 9,039 47,752 3,831 10,431 3,831 0,315 0,158 0,059 

 

Таблица 2 

Упругие свойства алюминиевого сотового заполнителя 

1
,E  

ГПа 
2
,E  

ГПа 
3
,E  

ГПа 
12

,G  

ГПа 
13

,G  

ГПа 
23

,G  

ГПа 
12
  

13
  

23
  

7,625 0,631 0,631 0,556 0,556 0,170 0,145 0,145 0,251 

 
В качестве начального приближения неизвестной величины S  

1( )  i iS S  усилия было произвольно задано некоторое значение 
 0 ,S  равное  ‒0,1 ГПа. Его знак и величина были выбраны такими, 

чтобы соответствующее напряженно-деформированное состояние 
пластины значительно отличалось от восстанавливаемого. 

Распределение продольных перемещений для задачи начального 
приближения приведено на рис. 4, а, на промежуточной (14-й из 60) 
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итерации — на рис. 4, б. На рис. 5 показано распределение для задачи 
на последней итерации ( 60)N , на рис. 6 — распределение восста-
новленного поля растягивающих усилий S  на торце пластины. 

 

Рис. 4. Распределение продольных перемещений 1u  (м) для задач начального (а) 

и промежуточного (б) приближения 

  

Рис. 5. Распределение продольных пе-

ремещений 1u  (м) для задачи на послед- 

ней итерации 

Рис. 6. Распределение восстановленного 
поля растягивающих усилий S  (ГПа) 
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Сравнение значения усилия   ,NS  вычисленного на конечном 
приближении метода, с точным значением ,S  показало, что предло-
женный алгоритм метода обеспечивает восстановление поля распре-
деления нагрузок точностью до 2…3 %, вполне достаточной для об-
ратных задач. 

Заключение. Разработаны методика и программное обеспечение 
для решения обратной задачи восстановления нагрузок, действую-
щих на композитные элементы конструкций. На примере численного 
решения задачи восстановления нагрузок, действующих на компо-
зитную панель с усиливающим жесткость фрагментом, показано, что 
разработанные методика и программное обеспечение позволяют вос-
станавливать поле распределения нагрузок типа заданного давления 
и сосредоточенных сил с точностью до 2–3 %. 

Работа выполнена при финансовой поддержке Российского фон-
да фундаментальных наук (грант № 15-08-04893). 
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Numerical solution of inverse three-dimensional problems 

of recovering the loads acting upon composite 
structural elements 

© Yu.I. Dimitrienko, Yu.V. Yurin, E.S. Egoleva 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The article proposes a numerical method for solving the inverse three-dimensional prob-
lems of recovering the fields of loads acting upon composite structural elements based on 
the results of the experimental diagnostics of structural displacements on a certain sur-
face. The problems of this type arise when creating the systems of the built-in diagnostics 
of structural movements and intelligent composite structures. The restored field of loads 
acting upon the parts of the outer surface of the composite structure is used to calculate 
the stress-strain state and forecast the structural life. The proposed method uses an alter-
nating algorithm for solving the inverse problems of restoring loads in the problem of 
elasticity theory, in combination with the finite element method for solving the direct 
problems in the theory of elasticity. We consider an example of solving the inverse prob-
lem of restoring loads acting on the structural elements made from layered fibrous com-
posite materials. 
 
Keywords: numerical modeling, the inverse problems of restoring loads, composite struc-
tures, finite elements method 
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