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Предложена математическая модель крутильных колебаний вращающегося ци-
линдрического слоя с движущейся внутри вязкой жидкостью. Разработан алго-
ритм определения напряженно-деформированного состояния точек рассматрива-
емой системы. В качестве примера приведена задача о крутильных колебаниях 
бурильной колонны, вращающейся с постоянной угловой скоростью. Даны оценки 
влияния потока внутренней вязкой жидкости и центробежной силы инерции на 
напряженно-деформированное состояние системы. 
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Введение. В некоторых исследованиях при моделировании задач 

крутильных колебаний бурильной колонны для описания движений ее 
точек применяют классические уравнения колебаний стержневой тео-
рии [1–5], теории гибких криволинейных стержней [6, 7] или теории 
изгиба балок [8]. Учесть влияние протекающей внутри колонны про-
мывочной жидкости в рамках этих теорий затруднительно. Кроме то-
го, при проведении буровых работ вращательным способом в сква-
жине постоянно циркулирует поток жидкости, являющийся средством 
для удаления продуктов разрушения. 

С этой точки зрения представляют интерес исследования динами-
ческого деформирования цилиндрических слоев, моделирующих рабо-
ту элементов разных инженерных конструкций, с учетом вращения и 
взаимодействия со средой, а также реологических, нелинейных и дру-
гих свойств их материалов [8–10]. Большое внимание уделяется изу-
чению нестационарного линейного и нелинейного взаимодействия 
с жидкостью и устойчивости [11] цилиндрических тел, а также рас-
пространению волн в них [12]. 

Однако для решения указанных задач для толстостенных элементов 
(например, бурильных колонн) нельзя применять теорию цилиндриче-
ских оболочек. В связи с этим ведутся многочисленные исследования 
направлений совершенствования моделей нестационарного взаимодей-
ствия цилиндрических тел [13], а также деформационных и прочност-
ных их характеристик, в рамках моделей, которые ориентированы для 
работы в условиях контактного взаимодействия с окружающей средой 
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и под действием внешних динамических нагрузок, имеющих актуаль-
ные прикладные значения [14, 15]. 

Постановка задачи. В цилиндрической системе координат 
 , )  ( , r z  рассмотрим задачу о крутильных колебаниях кругового 

упругого цилиндрического слоя с внутренним r1  и внешним r2  ради-

усами, вращающегося с постоянной угловой скоростью  и содер-
жащего вязкую жидкость, которая движется со скоростью const.   
При крутильных колебаниях цилиндрического слоя его напряженно-
деформированное состояние не зависит от угловой координаты   
напряжения    ( , , , )r r z t    ( ,  ,  )z r z t  и перемещение     ( , , )U r z t  отлич-

ны от нуля. 
Уравнение движения цилиндрического слоя с учетом вращения 

имеет вид [10]: 
2

2
2

2 ,   


    
        

r z r U
U

r z r t
                     (1) 

где   — плотность материала слоя.  

Как известно, крутильное перемещение слоя U  выражается че-

рез потенциальную функцию поперечных волн   как ,


 


U

r
 ко-

торая позволяет использовать уравнение (1) в виде 
2

2
2 2

1
,

 
     b t

                                    (2) 

где 
2 2

2 2

1
;

  
   

  r r r z
 /  b  — скорость распространения по-

перечных волн в материале слоя;   — коэффициент сдвига; t  — 
время. 

Введем подвижную систему координат 1 1 1( , ,    ),r z  движущуюся 

вместе с жидкостью и связанную с неподвижной системой координат 
формулами  

1 1 1, , .     r r z z t                                   (3) 

Уравнение движения вязкой жидкости, протекающей со скоро-
стью  , примем в форме [14]: 

0

1
0,

           t z
                              (4) 

где   — кинематический коэффициент вязкости;   — потенциаль- 

ная функция. При этом тангенциальная составляющая вектора скоро-
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сти частиц жидкости и ненулевые компоненты тензора напряжений 
вязкой жидкости имеют вид: 

,

         
V

t z r
 

1
,

                  
rP r

t z r r r
 

2

,
           

zP
t z r z

                                 (5) 

где 1       — динамический коэффициент вязкости; 1  — плотность 

жидкости. 
Для решения задачи представим потенциалы   и   в виде [16] 

 
1 2

(0)

( ) ( )

 ( , ) ( ,  ) ,    pt kz

l l

t z p k e dpdk                            (6) 

где  ( , ),  t z  (0) ( ) ,  p k  — непрерывная функция в области 0,t   0z  
и ее двухмерное преобразование (Re 0, Re 0p k   и arg ,   p

arg )   k  соответственно; 1,l  2l  — неограниченные открытые 

контуры в комплексной плоскости; ,p  k  — параметры преобра- 
зования. 

Подстановка (6) в уравнения (2) и (4) приводит к модифициро- 
ванным уравнениям Бесселя относительно (0)  и (0):  

   
2

2 2 (0) (0)
2

1
,    , 0.

 
       

 

d d

dr r dr
                        (7) 

Здесь  2 2 2 2
2

1
;   p k

b
 2 2.


  


p k

k  

Общие решения уравнений (7), удовлетворяющие при r = 0 
и  r   условиям ограниченности возмущений, имеют вид: 

(0)
1 0 2 0( ) ( ) ( );    r B I r B K r  (0)

0 ( ),  DI r                    (8) 

где 0 ( ),I r  0 ( )K r  — модифицированные функции Бесселя; 1,B  2 ,B  

D  — постоянные интегрирования.  
Представляя перемещение U  аналогично (6) с учетом (8), полу-

чим: 

 (0)
1 1 2 1( ) ( ) ,U B I r B K r        (0)

1( ) ( ).V p k DI r              (9) 

Считается, что крутильные колебания возбуждаются усилием, 
действующим на внешней 2r r  поверхности, изменяющимся по 
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заданному закону по координате z и времени t, т. е. граничное усло-
вие при 2r r  имеет вид: 

2    ( , ,  ( , ,  ) )  r rr z t f z t                                  (10) 

где rf  — функция внешнего усилия. 

На внутренней поверхности слоя 1,r r  контактирующей с вязкой 

жидкостью, должно выполняться динамическое условие, выражающее 
равенство касательных напряжений, 

1 1   ( , , ) ( , , ).        r rr z t P r z t                                (11)  

Предположим, что на колеблющейся контактной поверхности 
полностью отсутствует относительная скорость между частицами 
жидкости и близлежащими точками поверхности, т. е. кинематичес- 
кое условие 

1 1       ( , , ) ( , , ).  

       
U r z t V r z t

t z
                      (12) 

Начальные условия задачи считаются нулевыми. 
Вывод уравнений колебания. Преобразуем напряжения ,r  rP  

и функцию ( ,  )rf z t  по (6) в граничных условиях (10) и (11), а также 

выразим их через общее решение (8). В результате получим уравне-
ния 

 2 (0)
1 2 2 2 2 2

1
( ) (  ( , ) ) ;     

 rB I r B K r f k p                      (13) 

 2 2
1 2 1 2 2 1 2 1( ) ( ) ( ) ( ).


        


B I r B K r p k DI r             (14) 

С учетом (9) условие (12) принимает вид: 

 1 1 1 1 1 2 1 1( ) ( ) ( ) .      DI r B I r B K r                        (15) 

Используя стандартные разложения в ряды по степеням радиальной 
координаты ,r  модифицированных функций Бесселя I1 и K1, из (9) по-
лучим: 

 (0) 2 2
12 11 12

0

2 2

1 1
ln ( 1) ( 2)

2 2

( / 2)
,

!( 1)!

n

n

n

r
U B B B n n

r

r

n n









                





(16) 

где ( ) n  — логарифмическая производная гамма-функции. 
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Примем за искомые величины перемещения и напряжения 
в точках некоторой промежуточной поверхности цилиндрического 
слоя, радиус которой определяется по формуле [13]: 

1 1

2

,
2

 
    

 

r r

r
                                          (17) 

где постоянная   удовлетворяет неравенству 1 2 1

2 1 2

2 2 .    
r r r

r r r
 

Заметим, что при значениях ,  равных соответственно  

1 1 2 2 1

2 2 1 1 2

2       , 1 , 2 ,   
r r r r r

r r r r r
                                (18) 

  может быть радиусом внутренней, срединной и внешней поверхно-
сти цилиндрического слоя. 

В соответствии с формулой (17) положим, что в формуле (16) 
, r  и введем новые функции, являющиеся главными частями пре-

образованного перемещения: 

(0)
,1 2

1
, 


U B  (0) 2

,0 10

1
,

2   U B  10 1 2

1
ln (1) .

2 2

      
B B B       (19) 

Подставив (19) в выражение (16), получим формулу для преобра-
зованного перемещения (0)

U  через главные части (0)
,0U  и (0)

,1 :U  

   (0) 2 (0) 2 2 (0)
1 ,0 1 1 ,1

1
     ( ) 2 , 1, , , ,   

  
         

n nU r G r U G r U
r

        (20) 

где  
2

2 2

0

( / 2)
, , ,

!( )
   

!
 





    


n m
n n

m k k
n

r
G r

n n m
 1

0

1
( ) ln .

2( 1)





   
  

n

r n
r

n k
 

Выражение (20) на промежуточной поверхности  r  при  0n  
принимает вид: 

(0) (0) (0)
,1 ,0 .    U U U                                      (21) 

Из выражения (21) следует, что введенная функция (0)
,1U  имеет 

размерность перемещения, а функция (0)
,0U  — деформации. 

Представление (20) найдено исходя из строгой математической 
постановки и общего ее решения. Аналогичные представления пере-
мещений, полученные на основе чисто инженерных подходов, приме-
нены в работе [8]. Кроме того, если учесть, что главными частями 
быстро сходящихся при конкретных значениях радиальной координа-
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ты r  степенных рядов, входящих в выражения (20), фактически яв-
ляются несколько первых членов, то сразу станет ясно, что введен-
ные функции (0)

,0U  и (0)
,1U  — это главные части крутильного переме-

щения введенной характеристической поверхности слоя. 
Из условия (15) найдем выражение постоянной: 

 1 1 1 2 1 1
1 1

( ) ( ) .
( )


   
 

D B I r B K r
I r

                     (22) 

Уравнение (14) с учетом выражения (22) можно записать как 

   2 2 1
1 2 1 2 2 1 11 1 1 12 1 1

1 1

( ) ( )
( ) ( ) ( ) ( ) .

( )

   
         

 
p k I r

B I r B K r B I r B K r
I r

(23) 

Далее введем обозначение  

(0) 2 1

1 1

( ) ( )
.

( )

    
 

 
p k I r

R
I r

                          (24) 

В квадратных скобках в правой части равенства (23) дано не что 
иное, как выражение крутильного перемещения точек слоя. Исходя 
из этого оператор (0),R  введенный по формуле (24), является реакци-
ей вязкой жидкости с характеристиками ,  ,  ,  .  

Таким образом, граничные условия задачи можно записать в виде 

   2 (0)
1 2 1 2 2 1 1 1 1 2 1 1( ) ( ) ( ) ( ) 0,         B I r B K r R B I r B K r  

 2 (0)
1 2 2 2 2 2

1
( ) ( ) ( , ).     

 rB I r B K r f k p                  (25)  

В уравнениях (25) разложим функции nI  и nK ( 1,2)n   в степен-

ные ряды по степеням ir ( 1,2),i   и, выразив 1B  и 2B  через (19), по-

лучим уравнения крутильных колебаний вращающегося цилиндриче-
ского слоя, который взаимодействует с протекающей жидкостью, 
относительно главных частей перемещения в преобразованиях 

   2 2 (0) 2 2 4 (0)
2 1 ,0 2 1 2 1 ,12

1

1 2
2 , 1, , (       )

2
 , 

 

 
         

 
n nG r U G r r U

r
 

   (0) 2 (0) 2 2 (0)
1 1 ,0 1 1 1 1 ,1

1

     
1

2 , 1, , ( , 0  ), 
 

  
         

  

n nR G r U G r r U
r

     (26) 

   2 2 (0) 2 2 4 (0) (0)
2 1 ,0 2 2 2 2 ,12

2

1 2 1
2 , 1, , ( ), (         , ),

2
 

  

 
           

n n
rG r U G r r U f k p

r
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где 
2

2
1

1 1
( ) ln .

2( 1)( 2) 

 
   

   
n

i
i

k

r n n
r

n n k
 

В выражении (27), используя стандартные разложения в ряды 
Бесселевых функций и ограничиваясь  первым слагаемым, получим: 

2
(0) 1 1( )

.
4

  
 


r p k

R                                    (27) 

Введем функции ,0 ,1, U U  и операторы 2
n  по формулам  

1 2

(0) (0)
,0 ,1 ,0 ,1

( ) ( )

, , ;
           pt kz

l l

U U U U e dpdk                    (28) 

1 2

2
2

( ) ( )

( ) ( ) .       n n pt kz

l l

e dpdk                          (29) 

На основании выражения (7) для  2 2 2 2
2

1
   p k

b
 можно за-

ключить, что операторы 2
n  в переменных ( , )  z t  равны 

2 2
2

2 2 2 2

1
, 0, 1, 2   , .. . . 

   
         

n

n n
b t z

                  (30) 

Подставляя формулы (28) и (29) в (26), получим: 

11 ,0 12 ,1 0,   U U  21 ,0 22 ,1  , 
1

( , )     
 rU U f z t            (31)  

где 

 1 1 1 22 , , ,  n
i iG r k   2 2 1 1 2 22

1 2 1
, ,

2

 
         

 
n

i i i
i i

R G r k
r r

( 1, 2).i  

Здесь также 1 2 1( 2) ;
2

    i
i

r
k n R  2 2 2, 1, 1( ) ( 2) ( ) ;

2
      i

n i n i i

r
k r n r R  

ij  — символ Кронекера. 

Аналогично (30), записав оператор (0)R  в переменных ( , )  ,z t  по-

лучим оператор, выражающий реакцию внутренней вязкой жидкости 
на крутильные колебания цилиндрического слоя, 

2 2 2
21 1

2 2
2 .

4

     
          

r
R

t t z z
                         (32) 

Система уравнений (31) включает общие уравнения крутильных 
колебаний гидроупругой системы цилиндрический слой — вязкая 
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жидкость относительно главных частей перемещения точек промежу-
точной поверхности слоя. При значениях постоянного ,  определяе-
мых формулами (18), уравнения системы (31) являются уравнениями 
крутильных колебаний рассматриваемой гидроупругой системы отно-
сительно главных частей перемещения точек внутренней, срединной 
или внешней поверхности цилиндрического слоя соответственно. 
Полученные уравнения в своих структурах учитывают реакции внут-
ренней вязкой жидкости, движущейся с постоянной скоростью, в их 
правых частях учтены внешние усилия, приложенные к внешней по-
верхности цилиндрического слоя.  

Ниже приведем некоторые частные случаи относительно геомет-
рии цилиндрического слоя, свойств жидкости и ее движения, в кото-
рых уравнения системы (31):  

 при 1 0   и 0   превращаются в уравнения крутильных ко-

лебаний кругового цилиндрического упругого слоя [13]; 
 при 1 0r  и 1 0   превращаются в уравнения крутильных ко-

лебаний вращающегося стержня кругового поперечного сечения [15]; 
 при 2 1(1 ) ,  r r  (где  — малая величина, 0 )   превращают-

ся в уравнения крутильных колебаний круговой цилиндрической 
тонкостенной оболочки с учетом вращения и движущейся со скоро-
стью const   вязкой жидкости; 

 при 0,     превращаются в уравнения крутильных колеба-
ний цилиндрического слоя, заполненного покоящейся вязкой жид- 
костью. 

Формулы для определения напряженно-деформированного 
состояния системы. Данный подход наряду с уравнениями колеба-
ния через искомые функции позволяет выразить все ненулевые ком-
поненты напряжения и перемещения. Применив обратное преобразо-
вание к выражению преобразованного перемещения (20), получим 

   1
1 2 ,0 1 1 2 ,1

1
2 , 1, , ( ), .        

  
        
 

n nU G r U G r r U
r

           (33) 

Аналогично ненулевые компоненты тензора напряжений в слое и 
жидкости выразим через главные части перемещения в виде  

   1 2
2 2 ,0 2 2 2 2 ,12

1 2
2 , 1, , ( ), ,        

2
 

  

                
n n

r G r U G r r U
r

(34) 

   1
1 2 ,0 1 1 2 ,1       

1
2 , 1, , ( , ), 

  

                
n n

z G r U G r r U
z r
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 

     

1
2 1 3

2 1
2 3 1 2 ,0 1 1 2 ,1

    

       

, 2,

1
 , 1, 2 , 1, , ( ), ,    




 
 

  

               

n
r

n n n

G r n p

G r G r U G r r U
r

 

где 
2

3 2

1
,

              

n

n

t t z
 .

 
  

 t z
 

Формулы для перемещения (33) и напряжений (34) позволяют 
с требуемой точностью определить напряженно-деформированное 
состояние произвольного сечения цилиндрического слоя для произ-
вольного момента времени через ,0U  и ,1.U  

Приближенные уравнения колебания. В соответствии с выра- 
жениями (30) и (32) система уравнений (31) для операторов 2

n  и R  

включает дифференциальные уравнения с частными производными 
бесконечно высокого порядка относительно главных частей ,0U  

и ,1U  крутильного перемещения точек цилиндрического слоя. В та-

ком виде применение их в инженерных расчетах затруднено. Следо-
вательно, необходимо сократить количество членов в бесконечных 
рядах, т. е. ограничиться нулевым ( 0),n  первым ( 1)n  или други-
ми приближениями. 

Будем считать выполненными условия относительно границ об- 
ласти применения усеченных уравнений колебания цилиндрической 
оболочки [13] и для уравнений системы (31). Тогда, ограничиваясь 
нулевым приближением уравнений, будем иметь приближенные 
уравнения крутильных колебаний цилиндрического слоя, вращающе-
гося с постоянной угловой скоростью и движущейся вязкой жид ко-
стью: 

2 2 2 2 2 2 22 2 2
21 1 1 1 1 1 1 1 1

,02 2 2 2

22 2 2 2
1 1 1

,12 2 2 2 2
1

4 4 2 4 4 4

1 1 2
0,

2 4 2 2 4 2





            
                    

            
                    

r r r r r r
U

b t t z z b

U
b t t z z b r

  

(35)

 

2 2 22 2
22 2 2

,02 2 2 2

2 2 2

,12 2 2 2 2
2

4 4 4

1 1 2 1
( ,  ).

2 2 2



 

  
      

   
         

r

r r r
U

b t z b

U f z t
b t z b r

 

С помощью системы (35) можно решать прикладные задачи. 
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Динамический расчет бурильной колонны с учетом влияния 
потока внутренней жидкости. Ниже исследуем влияние протекаю- 
щей жидкости и угловой скорости вращения на напряженно-
деформированное состояние бурильной колонны на основе выведен-
ных уравнений колебания цилиндрического слоя. Предположим, что 
внешная поверхность колонны свободна от нагрузок. Тогда, полагая 

 ) ( , 0 rf tz  в правой части второго уравнения (35), пренебрегая не-

которыми членами как малыми величинами по сравнению с другими 
и вводя безразмерные переменные по формулам 

*,
l

t t
b

 *,z lz  *,  
b

l
 * ,  b  *, r r  *

1 1 , r r  

*
2 2 , r r  ,0 , U U  ,1 ,  U V                              (36) 

получим 

2 2 22 2 2 2 2
21 1 1 1

2 2 2 2 2
1

2 2
1 1 0,

4 2

                
                        

r
U V

l t t z z l r
 

2 2 2 2 2
22

2 2 2 2 2
2

2
0,

4 2

     
          

r
U V

l t z l r
                 (37) 

где l  — длина колонны. 
При этом напряженно-деформированное состояние бурильной 

колонны определяется через искомые функции U  и  V  по формулам 

,  U U V  ,

 
 

z

r U

l z
 

2 2 2 2
2

2 2 2 2

2
.

4

   
       

r

r U U
V

l t z r
   (38) 

Из формулы (37) получим следующее дифференциальное урав-
нение в частных производных: 

2 2 2

2 2
,

  
  

   
U U U

C D EU
t z t z

                           (39) 

где 
2

1 1

1

(1 )
;

(1 )

 


 
K U

C
K

 1 1

1

2
;

(1 )




 
U

D
K

 

2

1

(1 )
;

(1 )

 


 
K

E
K

 
4 2 2 2 2

2 1
4 2 2 2 2

1 2

4
.

4

  


  
r r l

K
r r l

 

Пусть бурильная колонна вращается под действием крутящего 
момента const,M  приложенного на верхнем ее конце. Тогда на 
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нижнем конце колонны возникает реактивный момент 1,M  обуслов-

ленный трением долота о породы. При этом имеют место следующие 
граничные условия: 

0

U
J M

z





  при 0,z       0 1

U
J M

z





  при ,lz              (40) 

где  4 4
0 2 1 2J r r    — осевой момент инерции бурильной колонны. 

Начальные условия имеют вид: 

0, ,


  

U

U
t

  при 0.t                            (41) 

Решение поставленной задачи осуществим численно методом ко-
нечных разностей. Для этого заменим дифференциальное уравне- 
ние (39) конечными разностями по неявной схеме с весовыми коэф-
фициентами [17]: 

1 1 1
1 1 ,n n n n

i i i i i iU mU nU f  
          ( 1, ..., , 0).   i N n               (42) 

Здесь 

2
21

12

2
1 ;i i

C
m E a

  
      

 1;in   
2

1
2

;
4

   
     

i

С D
a  

   
2 2

1 1 1 11 2 2
1 1 1 12 2

(1 )
2 2 2n n n n n n n n

i i i i i i i i i

C C
f U U U U U U U U   

   

     
          

 

 1 1 2 2 1
1 1 1 2 2(1 ) ;

4
n n n n
i i i i i

D
U U E U E U a  

 
           

 

  — шаг по времени;   — шаг по координате; 1,  2  — весовые 

коэффициенты.  
При этом граничные (40) и начальные условия (41) принимают 

вид: 
1 1

0 1 0/ ,  n nU U M J  1 1
1 1 0/ ; 
  n n

N NU U M J                    (43) 

0 0 0 1
1 1 0, .i i i iU U U U                                    (44) 

Численные результаты. Полученная система алгебраических 
уравнений (42)–(44) решена методом прогонки. Численная реализа-
ция задачи осуществлена для стальной колонны при следующих зна-
чениях ее физико-механических и геометрических параметров: 

7850   кг/м3; 0, 25;   112 10 Е  Па; 0,061   м; 1 0,975 ; r  

2 1,025 ; r  100l  м. Результаты представлены на рис. 1–6. 
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Рис. 1. Зависимость перемещения U от координаты в момент времени 1,2t   при 

1 ,M M   отсутствии внутренней жидкости 
1

( 0)   и следующих значениях угло- 

вой скорости: 
1 — 0;   2 — 0,5;   3 — 1;   4 — 1,5   

 

Рис. 2. Зависимость перемещения U  от времени в сечении 0,1z  вращающейся 

бурильной колонны при 
1

;M M  
1

1500, 1     и следующих значениях скорости  

жидкости: 
1 — 0, 001;   2 — 0, 005;   3 — 0, 01   

 

Рис. 3. Зависимость напряжения z  от координаты в момент времени 0,8t   

при 
1

;M M  
1

1500, 1     и следующих значениях скорости жидкости: 

1 — 0, 001;   2 — 0, 005;   3 — 0, 01;   4 — 0, 05   
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Рис. 4. Зависимость напряжения z  от координаты без учета жидкости 
1

( 0)   

при 
1

0,4 ;M M  0,25   и значениях: 

1 — 0,4;t   2 — 0,8;t   3 — 1,2t   

 

Рис. 5. Зависимость напряжения z  от координаты с учетом покоящейся вязкой 

жидкости 
1

( 0; 1500)     при 
1

0,4 ;M M  0,25   и значениях: 

1 — 0,4;t   2 — 0,8;t   3 — 1,2t   

 

Рис. 6. Зависимость напряжения z  от координаты c учетом движущейся вязкой 

жидкости 
1

( 0, 0005; 1500)     при 
1

0,4 ;M M  0,25   и значениях: 

1 — 0,4;t   2 — 0,8;t   3 — 1,2t   
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Полученные графики изменения перемещения по координате во 
вращающейся бурильной колонне без учета жидкости (см. рис. 1) по-
казывают, что увеличение угловой скорости приводит к увеличению 
амплитуды колебаний. На концах колонны при 1,5   амплитуда 
перемещения увеличивается в 1,9 раза по сравнению с 0.   В цен-
тральном сечении 0,5z  значение перемещения равно нулю при 
различных значениях угловой скорости. Это соответствует случаю 

1 .M M  При других соотношениях между 1M  и M  эта точка пере-

сечения кривых смещается влево (при 1 )M M  и вправо (при 

1 ).M M  С удалением от этого сечения перемещение принимает анти-

симметричные значения. 
Влияние протекающей жидкости приводит к изменению скорости 

волны в бурильной колонне, наблюдается существенное уменьшение 
амплитуды перемещения (см. рис. 2). Например, в сечение 0,1z  при 

0,01  максимальное значение перемещения в 11 раз меньше, чем 
в случае 0,001.   

Увеличение скорости жидкости приводит к затуханию напря- 
жений и перемещения. Когда волна достигает наблюдаемое сечение, 
это приводит сначала к резкому увеличению напряжения, которое 
постепенно затухает, например, при перемещении в сечение 0,5z  
при 0,01   значение напряжений в 5 раз меньше, чем в случае 

0,001.   

На рис. 3 приведены распределения напряжения z  по длине 

колонны для разных значений скорости жидкости. Видно, что 
касательное напряжение распределено симметрично относительно 
центрального сечения колонны ( 0,5)z  вне зависимости от скорости 
жидкости и наибольшее его значение при наименьшей ( 0,001)   
скорости жидкости (см. рис. 3, линия 1). 

На рис. 4–6 отображены  графики напряжения z  в зависимости от 

продольной координаты z  при 1 0,4 ;M M  0,25   и при различных 

значениях безразмерного времени t  (0,4; 0,8;1,2),  а также с учетом 

1 0   (см. рис. 4), наличия покоящейся 0   (см. рис. 4) и движу-

щейся 0,0005   (см. рис. 6) жидкости с плотностью 1 1000   кг/м3.  

Представленные графики показывают, что напряжение z  во 

всех сечениях колонны является сжимающим и его наибольшие 
значения (по модулю) наблюдаются в заключенных между равно-
удаленными от концов колонны сечениях. Например, в интервале 
0,2 0,8 z  при отсутствии жидкости, в интервале 0,15 0,85 z  
с учетом покоящейся жидкости. При протекающей жидкости такая 
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закономерность отсутствует, напряжение z  меняется в зависимости 

от моментов времени. 
Заключение. В работе предложена новая математическая модель 

крутильных колебаний цилиндрического слоя, вращающегося с пос-
тоянной угловой скоростью вокруг своей оси и взаимодействующего 
с протекающей жидкостью. На основе полученных уравнений иссле- 
довано влияние протекающей жидкости на колебания бурильной 
колонны. Установлено, что учет протекающей жидкости приводит 
к существенному уменьшению амплитуды колебаний и запаздыванию 
распространяющихся волн. 
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Mathematical modeling of the rotating cylindrical shell 
torsional vibrations factored in the internal viscous fluid 
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The article introduces a mathematical model of the rotating cylindrical shell torsional 
vibrations with the viscous fluid flowing inside. We have developed an algorithm for 
defining the stress-strain state of the considered system’s points. As an example we 
examine the problem of torsional vibrations of the drill column rotating with constant 
angular velocity. The article estimates the influence of the internal viscous fluid flow and 
the centrifugal inertia force on the stressed-strain state of the system. 
 
Keywords: cylindrical shell, viscous fluid, torsional vibrations, displacement of point, 
strain, torque, rotation, angular velocity 
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