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Предложен алгоритм классификации элементов поверхностей летательного аппа-
рата на основе бинарного решающего дерева с пороговыми предикатами. На основе 
исходного описания объектов разработаны производные признаки, позволяющие от-
делять классы с минимальными потерями. Проведены обучение и верификация пре-
дикатов на синтетических данных. Описан алгоритм получения данных для обуче-
ния. Невысокие значения ошибок классификации и простота реализации позволяют 
применять алгоритм при решении прикладных задач аэродинамики.  
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Введение. Распространенным способом описания конфигурации 

летательных аппаратов является ее представление с помощью раз-
личных комбинаций элементов поверхностей первого и второго по-
рядка. Часто встречаются цилиндрические, конические, эллиптиче-
ские (в частности, сферические) поверхности, плоские профили, 
элементы двухполостных гиперболоидов и эллиптических параболо-
идов. Многие современные методы определения аэродинамических 
характеристик применимы к телам, заданным в виде массива точек, 
которые связаны между собой в четырехугольные ячейки расчетной 
поверхностной сетки. Задание начального приближения на такой сет-
ке проводится методом Ньютона, который определяет давление на 
элементе поверхности как функцию угла встречи потока с поверх-
ностью тела. В то же время на разных элементах с одинаковым углом 
встречи давление может быть разным. И хотя существуют методы, 
позволяющие более точно определить давление на элементе той или 
иной поверхности [1–5], информации об одной ячейке не хватает для 
определения типа поверхности, с которой она взята. В данной работе 
предлагается метод для определения типа локальной поверхности те-
ла, использующий информацию о соседних ячейках. 

Для примера приведем задачу об обтекании затупленного по сфе-
ре конуса, которая подробно рассмотрена в работе [3]. В случае за-
тупленного конуса, когда сферическая часть отделяется от кониче-
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ской известной точкой сопряжения и не возникает необходимости 
в классификации, таргетированное (целевое) указание аэродинамиче-
ских параметров достаточно хорошо повторяет распределение коэф-
фициента давления pC  на затупленном конусе. Сравнение целевого 

указания параметров с точным решением и модифицированным ме-
тодом Ньютона приведено на рис. 1. Близость таргетированного ука-
зания к решению в рамках строгой математической постановки 
наглядно демонстрирует актуальность затрагиваемой темы.  

 

Рис. 1. Результат применения зави-
симости для затупленного конуса 
и метода Ньютона ( ) в сравнении 

с табличными данными ( ) 
 

Цель работы — получение простого и точного алгоритма класси-
фикации элементов поверхностей летательных аппаратов, а также 
восстановление геометрических параметров, необходимых для по-
следующего определения уточненных параметров обтекания на каж-
дом элементе с использованием полученной в ходе классификации 
информации. 

Подход к решению. При выборе типов поверхностей для класси-
фикации будем следовать практическим соображениям — рассмотрим 
семь классов поверхностей, наиболее часто встречающихся при проек-
тировании летательных аппаратов: сферы, эллипсоиды, эллиптические 
параболоиды, двуполостные гиперболоиды, конусы, цилиндры, плос-
кости. В качестве главной оси (для конуса, цилиндра, двухполостного 
гиперболоида, эллиптического параболоида) выберем ось .X  

Классификация проводится по набору из девяти точек, на кото-
рых построены четыре ячейки, образующие минимальный щит для 
классификации (рис. 2). Для удобства дальнейших рассуждений вер-
шины пронумерованы.  

По набору из девяти точек можно однозначно определить класс 
поверхности с помощью инвариантов обобщенного уравнения по-
верхности. Для этого необходимо определить коэффициенты уравне-
ния из решения системы линейных уравнений (СЛАУ) размерности 
9  9. Ранг матрицы квадратичной формы и знаки ее собственных чи-
сел, ранг и знак определителя матрицы, составленной из коэффици-
ентов уравнения, позволяют отнести поверхность к одному из 17 
классов (ниже алгоритм описан подробно). Ввиду того, что любая 
сетка лишь приблизительно описывает поверхность [6–8], при по-
добной классификации можно принять неверное решение. В качестве 
примера приведем набор из девяти точек, снятых с сетки, которая по-
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строена на сфере, определяемой уравнением 
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Рис. 2. Минимальный щит для классификации 
 
Его можно классифицировать как эллипсоид, определяемый 

уравнением 
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Поскольку положение центра для рассматриваемого случая не 
столь важно, в используемых для определения давления соотношени-
ях важны значения коэффициентов канонических уравнений поверх-
ностей и положение нормали к поверхности ячейки, которое можно 
определить из вершин ячейки. Положение центра необходимо ис-
ключительно для однозначной классификации поверхности. Исходя 
из этого, совместив центры параллельным переносом и сопоставив 
объемы, можно грубо оценить ошибку в приведенном примере как 
соотношение объемов sphV  и ellV  для сферы и эллипсоида соответ-

ственно: 

100 % 20,32 % . 


   sph ell

sph

V V

V
 

Кроме того, при достаточно подробных сетках, когда количество 
ячеек на теле измеряется миллионами, решение СЛАУ, вычисление 
инвариантов и приведение уравнения к каноническому виду стано-
вится весьма затратной процедурой, которой во многих случаях 
можно избежать. 

Для решения поставленной задачи было построено бинарное ре-
шающее дерево с пороговыми предикатами, обучение дерева прове-
дено по синтетической выборке. Описание дерева и алгоритм полу-
чения данных для обучения приведены далее. 

Описание признаков и объектов и обучающая выборка. В ка-
честве объектов классификации выбраны четырехугольные ячейки 
сетки на телах разной формы. Каждая ячейка описывается 12 атрибу-
тами — координатами вершин. Одной ячейки недостаточно, чтобы 
определить тип поверхности, поэтому ячейки группируются в щиты 
по четыре, а задача приводится к задаче классификации минималь-
ных щитов, описываемых 27 координатами точек. Этих признаков, 
как сказано выше, недостаточно для классификации объекта (щита), 
поэтому на их основе выводятся новые признаки, и размерность при-
знакового пространства повышается. Расширение пространства для 
отдельно взятого объекта происходит динамически по достижении 
вершины, использующей данный признак для классификации. Объ-
единение ячеек в щиты позволяет классифицировать ячейки сразу по 
четыре за один проход алгоритма. Такой подход сокращает объем 
данных для классификации. 

Для обучения дерева использованы синтетические данные. Была 
сгенерирована обучающая выборка, элементы поверхностей для клас-
сификации генерировались случайным образом. Данные подвергались 
зашумлению (намеренно искажались с целью приближения к данным 
с реальных сеток), величина случайного шума не превышала 1 % от 
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величины зашумляемого параметра. Для всех объектов обучающей 
выборки были определены производные признаки (при классификации 
объекта не из обучающей выборки предполагается определять произ-
водные признаки по мере необходимости). Подготовленные данные 
записывались построчно: первый элемент строки соответствовал но-
меру класса, следующие за ним — признаковому описанию объекта. 
Объем выборки составил 10 000 объектов.  

Рассмотрим процесс генерирования данных на примере элемента 
эллиптического параболоида. Запишем уравнение поверхности с еди-
ничными коэффициентами: 

2 2

.
2 2

 
y z

x  

Представим его в сферической системе координат, повернутой 
таким образом, что зенит отсчитывается от оси :X  
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Сгенерируем девять точек, случайно определив шаги   ,    по 
угловым координатам, а r  как функцию от них: 

( , 2 ) ( , 2 ) ( 2 , 2 )
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Получим координаты точек эллиптического параболоида в де-
картовой системе координат: 
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Случайно сгенерируем коэффициенты поверхности  ,  a b  (в диапа-

зоне  0;  10  для обучающей выборки), сдвиговые константы 0 0 0, ,    x y z  

(диапазоны зависят от конкретного типа поверхности) и шумы 
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, ,   x y zW W W  (в диапазоне    0,99; 1,01 , что соответствует отклонению 
в 1 %, погрешность построения сеток, как правило, на порядок ниже 
этого значения [6, 9]) для каждой координаты, применим к каждой точ-
ке операторы сдвига, сжатия и зашумления: 
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Сдвиги и коэффициенты генерируются для всего набора точек. 
Шумы генерируются для каждой отдельной точки. 

После сдвигов и сжатия получим набор точек, каждая из которых 
удовлетворяет уравнению поверхности, шумы создают некоторое от-
клонение от него, имитируя реальную сетку на теле. 

Дерево решений и классификация. Рассмотрим дерево принятия 
решений с пороговыми предикатами [10, 11] для классификации эле-
ментов поверхностей (рис. 3). Для удобства восприятия в терминаль-
ных вершинах изображены прототипы классов поверхностей. Вид де-
рева и расположение его листовых вершин определялись вручную, 
исходя из представлений о структуре реальных данных. Так, ближе к 
корню дерева расположены те классы поверхностей, которые чаще 
встречаются в реальной геометрии летательного аппарата. Узловые 
вершины выбраны так, чтобы обеспечить пропорциональное разбие-
ние данных. 

В каждой узловой вершине дерева находится функция-предикат, 
представляющая собой бинарный классификатор. Предикат сравни-
вает значение того или иного признака с пороговым значением и пе-
редает объект по одной из ветвей в следующую вершину. Пороговые 
значения, обеспечивающие оптимальное разбиение, подлежат опре-
делению. 

В качестве признакового описания объекта даны девять точек 
минимального щита, каждая из которых описывается тремя коорди-
натами. Этих признаков недостаточно для классификации, однако на 
их основе можно расширить признаковое пространство [12, 13]. Так, 
на первом этапе классификации выделим две большие группы объек-
тов — поверхности нулевой и ненулевой кривизны. Для этого вос-
пользуемся кривизной поверхности: 

 
2

22 2
,

1




 

yy zz yz

y z

X X X
K

X X
 

где ( ,  )X X y z  — уравнение поверхности; ,  ,  yy zz yzX X X  — соот-
ветствующие частные производные. 
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Рис. 3. Дерево принятия решений 
 
Поверхность задана дискретным набором [14] из девяти точек, 

поэтому определение кривизны неудобно ввиду необходимости вы-
деления главных направлений и численного дифференцирования 
вдоль них. 

Сформируем новый признак [15] исходя из определения кривиз-
ны. Поскольку кривизна характеризует отклонение поверхности 
в некоторой окрестности точки от касательной плоскости в этой точ-
ке, будем измерять непосредственно само отклонение. Построим 
нормали к четырем элементам щита, а их среднее нормированное 
значение примем за аналог нормали 5


n  к щиту в точке 5, как если бы 

щит был задан непрерывно. Отклонением по направлению назовем 
полусумму углов, которые составляют соответствующие ребра с ка-
сательной плоскостью: 
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где 

ijl  — вектор, соединяющий i  и j  вершины щита.  

Тогда полным отклонением назовем величину 46 28.K k k  
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Проходя входную вершину, алгоритм принимает решение об от-
несении поверхности к классу параболических или эллиптических, 
основываясь на предложенном аналоге кривизны поверхности (см. 
рис. 3). Предикат во входной вершине имеет вид 

1

1

1

0, ;
( )

1, ,

   






K t
K

K t
 

где 1t  — пороговое значение, определяемое в ходе обучения дерева. 

Ввиду того, что одна из геодезических линий на поверхности ко-
нуса или цилиндра — прямая, полное отклонение этих поверхностей 
равно нулю, а сами поверхности являются параболическими. Однако 
при построении сеток имеет место погрешность вычислений, поэто-
му элементами поверхности с параболической кривизной будем счи-
тать те щиты, чье полное отклонение меньше некоторого порогового 
значения, а не равно нулю. 

Двигаясь влево, попадем в дочернюю вершину, предикат в кото-
рой можно описать как  

46 28
11

11
46 28

11

1, ;
2

0, .
2

 

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Иначе говоря, если средние значения отклонений по направлени-
ям меньше некоторого определяемого в ходе обучения порога, то ал-
горитм приходит в терминальную вершину и такой щит следует 
классифицировать как элемент плоскости. В противном случае щит 
относится к классам конуса или цилиндра. 

Разделение на классы конуса или цилиндра удобнее всего произ-
водить, опираясь на постоянство цилиндрического радиуса вдоль ци-
линдра. Построив окружности на каждой тройке точек, при условии, 
что сетка равномерна или подробна и стремится к равномерной 
(с некоторой поправкой на зашумление данных и погрешности в ал-
горитме построения сетки), увидим либо постоянство радиуса, либо 
его изменение. Тогда щит отнесем к классу «цилиндр» или классу 
«конус», соответственно, предикат будет иметь вид 

111

111

111

1,
, 1,3, .
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Здесь Rc  — цилиндрический радиус, признак, который не дан явно, 
но может быть определен для каждой тройки точек (1–2–3, 4–5–6, 
7–8–9) по формуле Герона: 
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12 23 13
1

12 23 13

45 56 46
2

45 56 46

,
4 ( )( )( )
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
  

l l l
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p p l p l p l
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Здесь p  — полупериметр вписанного треугольника.  
Например, рассмотрим тройки точек 1–2–3 и 4–5–6. Если плоско-

сти, построенные по ним, параллельны, то вычислив радиус и срав-
нив его с порогом, можем классифицировать щит. Если сетка устрое-
на так, что тройки лежат не в параллельных плоскостях, следует 
построить плоскости через пары точек, например 1–3 и 4–6, перпен-
дикулярно ребру 2–5 и определить радиусы кривизны в плоскостях 
по точкам и пересечению с ребром 2–5 (рис. 4). 

 
Рис. 4. Точки для построения цилиндрических радиусов 

 

Пойдем теперь вправо от корневой вершины. В сравнении с други-
ми элементами эллиптической кривизны при конструировании лета-
тельных аппаратов наиболее часто используются сферические элементы 
(затупления, переходы), поэтому предпочтительно сначала проверить 
щит на принадлежность сфере. Для того чтобы однозначно описать ее, 
достаточно четырех, не лежащих в одной плоскости (рис. 5), поскольку 
для сферы достаточно указать положение координат центра и сфериче-
ский радиус. 

Центр сферы и радиус можно найти из решения системы 
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где      , , ,A B C D  — точки со сферы, не лежащие в одной плоскости; 
S  — центр сферы; O  — начало координат. 

 

Рис. 5. Минимальный набор точек для построения сферы 
 
Имея уравнение сферы, проходящей через точки     , , , , A B C D  

найдем отклонение остальных пяти точек от сферы: 

5
2 2 2

0 0 0
1

1
( ) ( ) ( ) .

5 

        i i i
i

x x y y z z R  

Расширив признаковое описание объекта отклонением от сферы ,  
можем описать предикат вершины как  
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Иными словами, если отклонение мало, перейдя в терминальную 
вершину, стоит рассматривать щит как элемент сферы с известным 
положением центра и радиусом. В противном случае следует перейти 
к следующей узловой вершине. 

Вершина параболоида помещена выше, чем вершины оставшихся 
двух классов эллипсоида и гиперболоида по причине того, что пара-
болоид чаще встречается в реальных геометриях реальных летатель-
ных аппаратов и нередко используется для аппроксимации эллипти-
ческих частей при проектировании. 

Теперь рассмотрим предикат, отделяющий класс параболоида от 
гиперболоида и эллипсоида. 
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Известно, что единичная нормаль 
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относится к параболоиду как 
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Выбрав из четырех площадок две, имеющие общую сторону, 
площадь которых минимальна, построим к их центру нормали. Тогда 
определим нормирующий множитель 

ц1 ц1
ц1

ц2 ц2
ц2

  

  

1
( , ) ;

1
( , ) .

 


 


x

x

L x y
n

L x y
n

 

Индекс «ц» здесь обозначает центр площадки. 
Тогда для каждой из компонент нормали сможем определить не-

известные коэффициенты из соотношений вида 
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В этом случае предикат будет иметь такой же вид, что и для сфе-
ры, с той лишь разницей, что с пороговым значением сравнивается 
отклонение от уравнения параболоида для предиката 
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Отклонение будем определять от трех точек, которые не исполь-
зовались в составлении уравнения параболоида: 
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Для разделения оставшихся объектов на классы гиперболоида 
и эллипсоида необходимо определить инварианты обобщенного 
уравнения поверхности второго порядка по девяти точкам. Эти про-
цедуры в сравнении с необходимыми вычислениями для других вер-
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шин существенно более ресурсозатратны, а классы поверхностей эл-
липсоида и гиперболоида на практике встречаются реже, чем, к при-
меру, сфера или цилиндр, поэтому вершина, отделяющая эти два 
класса, помещена в конец дерева. Рассмотрим подробно процесс по-
строения уравнения поверхности по девяти точкам в целях расшире-
ния признакового описания объекта. 

Обобщенное уравнение поверхности состоит из трех квадратич-
ных, трех смешанных, трех линейных и одного свободного члена 
с десятью коэффициентами при них: 

2 2 2 2 2 2 2 2 2 0.         Ax By Cz Fyz Gxz Hxy Px Qy Rz D  

Поделив это уравнение на свободный член, получим 
2 2 2 2 2 2 2 2 2 1.         Ax By Cz F yz Gxz Hxy Px Qy Rz  

Имея координаты девяти точек, можем определить девять коэф-
фициентов из решения системы  
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Решив систему, построим инварианты поверхности, однозначно 
разделяющие два оставшихся класса. Для этого составим матрицу 
квадратичной формы 
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Отнесение к классам эллипсоида и гиперболоида не несет не-
определенности, накладываемой погрешностью сетки. В данном слу-
чае нет потребности в обучении. Знаки собственных чисел найденной 
матрицы е совпадают в случае эллипса и различны в случае двухпо-
лостного гиперболоида. 
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Анализ результатов классификации. Дерево с пороговыми 
значениями, принятыми в качестве оптимальных в процессе обуче-
ния, показало высокие значения различных метрик качества класси-
фикации на тестовой выборке.  

 

 
Рис. 6. Отделение классов предикатами 1  (а), 1  (с увеличением 133) (б): 

 — конуса;  — цилиндра;  — эллипсоида; 
 —  гиперболоида;   —  параболоида;   —  

плоскости;  — сферы 
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Рис. 7. Отделение классов предикатами 12  (а) и 11  (б): 

— конуса;  — цилиндра;  — эллипсоида; 
 —  гиперболоида;   —  параболоида; 

— плоскости;  — сферы 
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Рис. 8. Отделение классов предикатами 121  (а), 111  (б): 

— конуса;  — цилиндра;  — эллипсоида; 
 —  гиперболоида;   —  параболоида; 

— плоскости;  — сферы 



В.П. Котенев, Р.А. Рацлав, Д.А. Сапожников, И.В. Чернышев 

98 

На рис. 6–8 показано отделение классов предикатами. По оси абс-
цисс отложено значение признаков для объектов тестовой выборки, по 
оси ординат — случайные значения от 0 до 1, введенные для нагляд-
ности. Определенные пороговые значения разделяют области соответ-
ственно предикату. Объем тестовой выборки составил 700 объектов.  

Убывание информационной энтропии [16], отнесенной к энтро-
пии в корневой вершине 1/ ,iS S  представлено на графике (рис. 9). 

 

Рис. 9. Убывание нормированной информационной энтро-
пии от корневой вершины 1/iS S  к листовым вершинам 

 
Результаты по каждому предикату и средние значения вынесены 

в таблицу. 

Пороговые значения предикатов и метрики качества [17] 

Предикат Пороговое значение Доля правильных 
ответов Точность Полнота 

1  51, 0910095 10  1 1 1 

11  42, 50014 10  1 1 1 

12  0, 00168  0,953 0,884 0,99 

121  0, 00983  0,950 0,967 0,88 

111  60, 6353 10  1 1 1 
 

В предикатах, отвечающих за отделение классов сферы и парабо-
лоида, данные не отделились однозначно (см. рис. 6–8), была допуще-
на небольшая ошибка. Из этого можно предположить, что ошибочно 
классифицированные элементы достаточно хорошо описываются сфе-
рой или параболоидом [2]. На реальной сетке подобные ошибки могут 
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быть устранены с использованием информации о ближайших соседях. 
Так, элемент сферы, появившийся среди параболических элементов на 
реальной сетке, очевидно, был ошибочно классифицирован, его класс 
следует изменить с помощью других методов классификации. Учиты-
вая, что сетка, как правило, структурирована, логично будет корректи-
ровать результаты методом K ближайших соседей. Кроме того, по-
скольку погрешность аппроксимации реальных сеток существенно 
ниже шума, примененного к синтетическим данным, можно предпо-
ложить, что такая проблема на реальных данных не будет иметь места. 

На рис. 6–8 видно, что классы эллипсоида и гиперболоида до-
вольно качественно отделились в первом предикате. В ходе построе-
ния рассуждений такой эффект не предполагался, однако его обна-
ружение позволяет существенно снизить вычислительную сложность 
модели. Так, изначально предполагалось отделение классов гипербо-
лоида и эллипсоида из определения обобщенного уравнения поверх-
ности путем решения СЛАУ размерности 9  9, что является весьма 
ресурсозатратной процедурой. Однако результат показывает, что 
можно использовать тот же аналог кривизны, что и в первом преди-
кате, для разделения классов в предикате 1211  (рис. 10). 

 

Рис. 10. Отделение классов гиперболоида и эллипсоида по кри-

терию из предиката 1  с пороговым значением 0,044377 

 
Предложения для модификации метода. Щиты параболических 

и эллиптических цилиндров могут быть приближены круговым ци-
линдром или, в случае ориентации к потоку под ненулевым углом 
атаки, круговым конусом, согласно методу локальных конусов. 
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На стыках поверхностей могут появляться участки с гиперболи-
ческой кривизной (например, сопряжение двух конусов с различны-
ми углами), где возникнет ошибка классификации (рис. 11). 

 

Рис. 11. Тело, состоящее из элементов конусов с разным углом полу-
раствора; закрашенные ячейки, расположенные на стыке конусов, де-
монстрируют ошибку классификации, заштрихованные ячейки иллю- 

стрируют способ преодоления ошибки классификации 
 
Выделенные цветом щиты в верхней части рисунка демонстри-

руют описанный случай. Хотя оба сегмента тела являются параболи-
ческими поверхностями, а именно элементами конуса, средний щит, 
лежащий на стыке конусов, не будет отнесен ни к одному из описан-
ных классов. Щит, построенный по обе стороны от сопряжения, об-
ладает гиперболической кривизной, хотя все его площадки были сня-
ты с параболических поверхностей, определять давления на них 
можно по формулам для конусов. В таком случае следует выбирать 
такой шаг сетки, чтобы на один сегмент тела приходилось целое ко-
личество минимальных щитов, или разделить щит на ячейки и клас-
сифицировать их как ячейки соседних щитов (см. рис. 11).  

Заключение. Предложенный алгоритм классификации достаточно 
точен и прост в использовании, его можно применять в прикладных 
задачах аэродинамики в целях уточненного определения давления на 
корпусе летательного аппарата методами локальных поверхностей 
и встраивать в программные комплексы, основанные на строгих мате-
матических моделях для ускорения их работы. Помимо определения 
класса элемента поверхности, в процессе классификации определяют-
ся все необходимые геометрические параметры объекта того или ино-
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го класса, необходимые для определения давления на элементе. Ячей-
ки классифицируются наборами по четыре, что существенно сокраща-
ет время перебора всех ячеек в сравнении с перебором по одной ячей-
ке. Эффект от применения метода в прикладных задачах будет 
исследован в следующих работах. 

Авторы выражают благодарность А.О. Калиненковой и Д.Н. Мо-
рякову за помощь в подготовке иллюстраций. 
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The study introduces an algorithm for classifying the aircraft surface elements based on 
a binary decision tree with threshold predicates. According to the initial description of 
the objects, we developed derived characteristics allowing for the classes to be separated 
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with minimal losses. Moreover, we trained and verified the predicates on synthetic data 
and described an algorithm of obtaining the data for training. Low values of classifica-
tion errors and ease of implementation make it possible to apply the algorithm for solv-
ing aerodynamic applied problems. 
 
Keywords: aircraft, decision tree, classification, optimization of aerodynamic calcula-
tions, development of characteristics 
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