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Рассмотрено применение метода прямого статистического моделирования к зада-
чам газовой динамики в разреженной области. Предложен аналитический метод 
задания и учета сложных граничных условий, связанных с геометрией находящегося 
в расчетной области тела. Разработан алгоритм рационального описания обтека-
емого газом тела.  
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аэродинамика разреженного газа 
 

Введение. Проблемам математического моделирования аэроди-
намики летательных аппаратов посвящены труды многих видных 
ученых [1–14]. Численные методы моделирования процессов обтека-
ния газовым потоком высокоскоростных летательных аппаратов 
(ВЛА), движущихся на относительно небольших высотах [4–6], не 
применимы для исследования аэродинамики движения ВЛА в разре-
женных потоках, характерных для больших высот.  

Распространенные в инженерной практике методы механики 
сплошной среды [4], являющиеся следствием уравнения Больцмана, 
адекватно описывают поведение газового потока только для ограни-
ченной области значений числа Кнудсена Kn = / , L  зависящего от 
длины свободного пробега молекул   и характерного размера L. 

В условиях Kn > 0,1,  когда предположение о сплошности среды 
не выполняется, уравнения Навье — Стокса не позволяют получить 
решение, соответствующее физике процесса. В этом случае для опи-
сания динамики газового потока используется уравнение Больцмана. 
Другим способом описания газового потока при Kn > 0,1 является 
метод прямого статистического моделирования (ПСМ) [8]. В рабо- 
те [10] доказывается сходимость решения, полученного методом 
ПСМ к решению уравнения Больцмана. 

Цель настоящей работы — усовершенствование метода ПСМ за 
счет рационального описания геометрии обтекаемой поверхности. 

Математическая модель движения молекулярного потока. 
При отсутствии гипотезы о сплошности математическая модель в ви-
де динамической системы многих частиц является наиболее подроб-
ным уровнем описания молекулярных систем, при котором движение 
молекул определяется системой дифференциальных уравнений 
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где im  — масса i -й молекулы; ir  — координаты i -й молекулы; t  — 

время; 

ijF  — силы межмолекулярного взаимодействия -йi  и -йj  мо-

лекул; 


iR  — результирующая сила внешнего воздействия на i-ю мо-
лекулу.  

Помимо уравнений движения требуется задать начальные коор-
динаты и скорости каждой молекулы. Однако для очень разреженно-
го газа решение подобной системы является сложной задачей из-за 
огромного числа молекул и, как следствие, уравнений, поэтому 
в данной статье рассматривается менее полное, кинетическое, описа-
ние разреженного газа. 

В соответствии с этим описанием поведение системы определя-

ется функцией распределения   ( , ,  )


f t r V  молекул по скоростям 

V  и 

пространству 

r  в момент времени t . Равенство    ( , ,  )

  
dN f t r V drdV  

определяет число частиц ,dN  координаты которых лежат в объеме 

( , ), 
  
r r dr  а скорости в интервале ( , ). 

  
V V dV  

Дифференцируя   ( , ,  )


f t r V  как сложную функцию, получим: 

,
  
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где r  и V  — операторы градиента по 

r  и по 


V  соответственно. 

Координаты 

r  и 


V  вдоль траектории частиц связаны уравнения-

ми движения 

,
 dr

V
dt

 .
 

dV F

dt m
 

Здесь m  — масса частиц, причем поскольку частицы не взаимодей-
ствуют друг с другом, их скорости вдоль траекторий сохраняются, и 

сила 0.
 
F  Однако если все частицы находятся в некотором внеш-

нем силовом поле с потенциалом ( ),


U r  то 0. 


rU  С учетом изло-

женного получаем окончательный вид кинетического уравнения 
Больцмана 

1 11 1  ... ( ) .
 
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Необходимо отметить, что вид функции   зависит от модели 
взаимодействия частиц. Конкретный вид этой функции приведен 
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в монографиях по кинетической теории газов [4, 9]. Уравнение Больц-
мана является сложным интегродифференциальным уравнением. 

Эффективный подход описания кинетики частиц при наличии 
взаимодействия между частицами был предложен Л. Больцманом 
еще в 1872 г. Согласно его теории, скорость изменения функции рас-
пределения за счет столкновений учитывается с помощью интеграла 

( )St f  столкновений. В этом случае 

( ).
df

St f
dt

 

Конкретный вид интеграла ( )St f  столкновений зависит от выбо-
ра модели взаимодействия частиц. В практике численного моделиро-
вания динамики разреженных газов используется интеграл столкно-
вений для случая, когда одновременное взаимодействие трех частиц 
маловероятно, и учитываются только парные столкновения. Рассмот-
рим одну из возможных форм записи интеграла столкновений: 

1 1 1 1( ) ... ) (  ,
 

 

       
  

St f f f f f dV dV dV  

где ( , , ),


f f t r V  1 1( , , ),


f f t r V  ( , , ), 


f f t r V  1 1( , , ) 


f f t r V  — 

функции распределения частиц по пространству;   — функция, 
определяющая долю частиц, за счет столкновения поменявших ско-

рости с 

V  и 1


V  на 


V  и 1;


V  


V  и 1


V  — скорости взаимодействующих 

молекул до столкновения; 

V  и 1


V  — скорости тех же частиц после 

столкновения. 
Предположение о сплошности среды не выполняется в условиях 

околоземного пространства при газовых течениях на микро-, нано- 
и других уровнях. В то же время использование более общего урав-
нения Больцмана для расчета поведения ансамбля молекул сопряже-
но с трудоемким вычислительным процессом, а учет самых простых 
граничных условий для модельных геометрий приводит к интегро-
дифференциальным уравнениям, требующим последующего числен-
ного решения [4]. Таким образом, необходим вычислительно эффек-
тивный и физически адекватный метод расчета поведения частиц 
в рассматриваемых областях. 

Модифицированный численный статистический алгоритм. 
Метод прямого статистического моделирования (метод прямого мо-
делирования Монте-Карло) [7] предполагает рассмотрение газа как 

множества отдельных частиц с вектором скорости ,

V  положение ко-

торых в пространстве определяется радиус-вектором .

r  В качестве 

расчетной области удобно (но необязательно) выбрать параллелепи-
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пед, вмещающий в себя обтекаемое тело и интересующую область 
окружающего пространства. Расчетная область некоторым образом 
разбивается на ячейки, в ней задаются положение и структура тела, 
обтекаемого потоком, и временной шаг моделирования .t  Модели-
рование выполняется по итерационной схеме, каждый i -й цикл кото-
рой состоит из нескольких этапов. 

1. Генерация частиц в расчетную область в соответствии с задан-
ными макроскопическими параметрами окружающей среды (вектора 

скорости набегающего потока ,


V  концентрации молекул n и темпе-

ратуры ).T  В этом случае производится розыгрыш скорости моле-
кул на границе расчетной области в соответствии с распределением 
Максвелла. 

2. Моделирование движения частиц без столкновений (между со-
бой). На этом этапе для каждой частицы определяется новое положе-
ние по формуле 1 1 ,   

  
i i ir r v t  если за время t  частица не сталкива-

ется с обтекаемым телом. Здесь 

ir  — радиус-вектор, определяющий 

положение частицы в расчетной области на i -й итерации; 1

iv  — век-

тор скорости частицы на ( 1i )-й итерации; ∆t — шаг по времени. 
Если же столкновение происходит в момент ,  то каждая частица, 

для которой определен факт столкновения с телом, претерпевает изме-
нение своего вектора скорости в соответствии с выбранной моделью  
взаимодействия с границей. В простой модели зеркального отражения 

вектор скорости частицы изменяется по формуле 2 ( , ),     
i

w
i iv v n v n  

где 
w
iv  — скорость частицы, отраженной от обтекаемой поверхности;  


n  — единичный вектор нормали к поверхности тела. На данном этапе 
также можно учитывать обмен импульсами между телом и частицей для 
последующего вычисления аэродинамических характеристик обтекае-
мого тела. Тогда новое положение частицы определяется по формуле 

1 1 1( ).          w
i i i ir r v v t  

3. Удаление частиц, покинувших пределы расчетной области. 
После того как для каждой частицы определено новое положение, 
проверяется попадание ее в расчетную область. Те частицы, которые 
выходят за пределы области, удаляются. 

4. Моделирование соударений частиц между собой. На данном 
этапе вычисляются новые значения скоростей частиц в результате 
соударений. Важной особенностью метода ПСМ является учет со-
ударений между частицами только в одной ячейке расчетной обла-
сти, а также отсутствие необходимости детерминированного расчета 
столкновения для каждой пары частиц в ячейке (как в методах моле-
кулярной динамики [8]). Все частицы в расчетной области сортиру-
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ются по ячейкам разбиения. Пара для столкновения выбирается веро-
ятностно, без учета конкретных положений частиц в ячейке. В клас-
сическом методе мажорантной частоты для каждой пары соударяю-
щихся частиц определяется вероятность ijP  соударения за единицу 

времени 

,
 




ij r
ij

v t
P

W
 

где ij  — сечение столкновения; rv  — относительная скорость части-

цы; W  — объем ячейки. Для каждой пары частиц в ячейке определяет-
ся вероятность их столкновения и сравнивается со случайным числом 
~  0; 1  R . Соударение считается произошедшим, если ijP  оказалась 

больше случайного числа. После этого скорости двух частиц преобра-
зуются в соответствии с выбранной моделью молекул, например моде-
лью жестких сфер. 

5. Проверка условий окончания процесса моделирования. В про-
цессе моделирования наступает момент, когда число частиц в ячей-
ках практически перестает изменяться, т. е. наступает стационарный 
режим течения газа (течение устанавливается). Процесс моделирова-
ния прекращается при выполнении n  итераций после установления 
стационарного режима течения, либо при достижении максимального 
времени моделирования max ,t  либо при выполнении других условий. 

Полученное распределение микрочастиц в пространстве использует-
ся для вычисления макроскопических характеристик потока и аэро-
динамических характеристик обтекаемого тела, например, макроско-
пического вектора скорости ,


V  с помощью осреднения на одной 

итерации по характеристикам микрочастиц, принадлежащих той же 
ячейке, что и точка, в которой необходимо вычислить макропараметр 

,




iv

V
k

 

где k  — количество микрочастиц в ячейке и последующего осредне-
ния по числу итераций в установившемся режиме. 

Хотя метод прямого моделирования не является непосредствен-
ной дискретизацией уравнения Больцмана, результаты его примене-
ния можно трактовать как численное решение этого уравнения. При 
этом доказана сходимость метода ПСМ к решению уравнения Больц-
мана [7]. 

При применении метода к расчету обтекания космических лета-
тельных аппаратов разреженным потоком требуется выбрать способ 
задания тела в расчетной области. В данной работе предлагается ме-
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тод задания тела и расчета взаимодействия частиц с ним на основе 
блочной твердотельной геометрии, предполагающей рассмотрение 
тела как рекурсивной композиции примитивных геометрических 
объектов, в которой тело может быть примитивом, объединением или 
пересечением тел, дополнением к телу. 

В качестве примитивов выбраны полупространство, шар, внут-
ренность бесконечного цилиндра и внутренность бесконечного кону-
са с заданными параметрами положения в пространстве, ориентира 
и характеристик (например, центр и радиус шара, направление и по-
ложение оси, радиус цилиндра), предусмотрена возможность расши-
рения набора примитивов. Комбинируя примитивы с помощью опе-
раций над множествами ,  ,   , можно описать широкий класс 

геометрических объектов, в том чис-
ле близких к реально обтекаемым те-
лам. Такой подход к описанию гео-
метрии реальных объектов заре-
зарекомендовал себя в различных 
системах проектирования и числен-
ного моделирования. В качестве 
примера на рис. 1 приведено тело, 
полученное в результате пересечения 
шара и четырех полупространств. 

Как и структура данных для зада-
ния тела, алгоритм расчета столкно-
вения частицы с таким телом рекур-
сивен. Для каждого примитивного 

объекта вводится функция ( , ), p B  которая для любой частицы ,p  об-
ладающей вектором скорости и положением, возвращает набор интер-
валов (след частицы на теле): 

         1 1 2 2 2 1 2 1 2 2, ; , ,..., , ; , .   n n n nt n t n t n t n  

Здесь каждая пара значений t  определяет промежуток времени, в те-
чение которого траектория частицы проходит внутри тела. Для каж-
дого значения t  определяется положение частицы в этот момент 
времени и вектор нормали к поверхности объекта в соответствующей 
точке. Для тел, ограниченных поверхностями второго порядка, след 
состоит из одного интервала, один или два конца которого могут 
быть бесконечными     1 1 2 2, ; , .  t n t n  

Для сложных объектов (объединений, пересечений и дополне-
ний) следы преобразуются следующим образом: 

 след пересечения равен пересечению следов; 
 след объединения равен объединению следов; 

 

Рис. 1. Тело, полученное в ре-
зультате  комбинирования  исход- 

ных примитивов 
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 след дополнения равен дополнению к следу, при этом все нор-
мали обращаются. 

Для определения факта столкновения частицы со сложным телом 
требуется вычислить след частицы на этом теле. Если при этом ре-
зультат операции непустой и равен ( , 0),t  то считается, что на 
предыдущем шаге частица столкнулась с телом и углубилась в него 
на расстояние .vt  Тогда положение частицы изменяется по формуле 

1 1 ,   
  
i i ir r v t  а скорость преобразуется с учетом ранее вычисленной 
нормали в точке столкновения. 

Алгоритм позволяет быстро получить простую реализацию трас-
сировщика лучей для визуализации описанных тел, хотя существуют 
более эффективные алгоритмы для отрисовки объектов блочной 
твердотельной геометрии (алгоритм Голдфизера, метод марширую-
щих кубиков). За счет реализации алгоритма на языке Haskell вычис-
ление нормалей происходит только в случае соударения частицы 
с конкретным примитивом, входящим в тело. Таким образом, дости-
гается высокая композиционность алгоритма при невысоких вычис-
лительных издержках. 

Существуют разные способы повышения вычислительной эф-
фективности метода прямой симуляции [1, 11], главным образом, 
связанные с повышением локальности обрабатываемых данных и па-
раллелизацией вычислений по пространству. На этапе соударения 
взаимодействие частиц в каждой ячейке происходит независимо от 
других ячеек, следовательно, этот шаг алгоритма ПСМ на каждой 
итерации можно выполнять параллельно на нескольких вычисли-
тельных конвейерах. 

Результаты численного моделирования. Основная особенность 
представленной реализации ПСМ заключается в использовании трас-
сировки лучей для точного определения точек пересечения траекто-
рий частиц с телом по аналитическому 
описанию структуры тела как компози-
ции примитивов. На этапе столкновений 
используется обычная регулярная сетка, 
что позволяет быстро выполнять сорти-
ровку. Таким образом, влияние традици-
онно трудоемкого этапа сортировки мо-
лекул на общее время вычислений 
снижается. 

В качестве тестового случая для ис-
пытания эффективности представленной 
реализации рассмотрим приведенную в 
статье [8] задачу обтекания усеченного 
цилиндра (рис. 2) потоком c ,


V  направ-

 

Рис. 2. Геометрия усеченного 
цилиндра 
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ленной вдоль оси цилиндра. Исходя из того, что в статье [8] рассмот-
рена осесимметричная задача, а представленная реализация работает с 
полностью трехмерной постановкой, для эффективности цилиндр был 
усечен еще двумя плоскостями до четверти и размещен по границе .  

С использованием технологии CSG (Constructive Solid Geometry) 
этот же цилиндр описан следующим образом: 

body = intersect 
(intersect 
(intersect (plane (0, 0, 1) 0) (plane (0, 1, 0) 0)) 
(intersect (plane (1, 0, 0) 5) (plane (–1, 0, 0) 5))) 
(cylinder (1, 0, 0) (0, 0, 0) 0.01) 
Ниже приведем параметры течения.  
Газ  ....................................................  Аргон  
Концентрация молекул, n   .............  1021  
Температура стенки, ,T  K  .............   100  
Скорость набегаемого невозмущенного потока, 


V  .................  (1000, 0, 0) 

Модель рассеивания  ....................................................................  Диффузная  
Температура поверхности тела, ,wT  K  ......................................  300 
Число Кнудсена, Kn  ....................................................................  0,01 
Причем число Kn  находится на нижней границе практической 

применимости ПСМ. 
В работе [12] для аналогичной задачи обтекания усеченного ци-

линдра при использовании сеточного подхода для геометрии тела 
(рис. 3) указывается время расчета в 31 ч при шести потоках испол-
нения. Временной шаг выбран равным 71,87 10 .  t  

 

Рис. 3. Обычная сетка для усеченного цилиндра 
 
Представленная реализация алгоритма с использованием трасси-

ровки лучей иррегулярной сетки позволила выполнить ту же задачу 
за 23 ч 47 мин при четырех потоках исполнения. Время сбора статис-
тики после установления составило /3,st  где st  — время установ- 
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ления потока. Основной прирост производительности, очевидно, 
происходит из-за разных подходов к задаче отслеживания частиц 
в ячейках. Таким образом, применение аналитического подхода к за-
даче учета граничных условий в ПСМ позволило получить выигрыш 
по времени счета в 23 % при использовании меньшего числа потоков 
исполнения. Результаты вычислений — поля /    и / T T  (где   — 

плотность среды) в сравнении с эталонными данными [8] — пред-
ставлены на рис. 4, 5. Полученные результаты демонстрируют хоро-
шее совпадение с данными, приведенными в статье [8]. Все изобра-
жения и геометрии тел построены в Para View. Также было 
проведено тестирование алгоритма учета геометрии тела с помощью 
трассировки лучей на телах другой формы, результаты которого 
в данной статье не были рассмотрены. 

 

Рис. 4. Поле /    вокруг цилиндра: 

а — эталон [8]; б — результат 

 

Рис. 5. Поле / T T  вокруг цилиндра: 

а — эталон [8]; б — результат 

 
Заключение. Предложена модификация метода прямого статис-

тического моделирования для расчета течений разреженных газов 
в диапазоне чисел Кнудсена от 0,1…10, которая заключается в анали-
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тическом описании обтекаемых тел сложной формы на основе блоч-
ной твердотельной геометрии и разработке численной реализации ал-
горитма трассировки лучей. Тестовые расчеты показывают более вы-
сокую производительность предложенного метода при сохранении 
приемлемой точности по сравнению с известными алгоритмами.  

Результаты работы заключены в новом расчетном методе, кото-
рый несколько отличается от метода, использованного в работе [8], 
и позволяет рассчитывать аэродинамические характеристики тел 
в разреженных газах более разнообразных форм. 
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Numerical statistical simulation of the process  
of rarefied gas flow over an aircraft  
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The article considers the application of the direct statistical simulation method to the 
problems of gas dynamics in a rarefied region. An analytical method for assignment and 
taking into account complex boundary conditions associated with the geometry of the 
body located in the computational domain is proposed. An algorithm for the rational de-
scription of a body streamlined by a gas is developed. 
 
Keywords: direct statistical simulation, Monte Carlo method, rarefied gas aerodynamics 
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