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Предложен метод расчета несущей способности гладкой цилиндрической оболоч-
ки, находящейся длительное время под действием комплекса осевых и поперечных 
нагрузок. Предполагается, что при длительном нагружении материал оболочки 
подвержен явлению ползучести, что в свою очередь влияет на несущую способ-
ность оболочки. Получены соотношения, позволяющие оценить это влияние.  
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Введение. Как показано в работах [1–14], в процессе потери 

устойчивости цилиндрической оболочки в условиях ползучести ма-
териала на ее поверхности в течение длительного времени не появля-
ется заметных вмятин. Лишь незадолго до разрушения оболочки на 
ее поверхности появляется вмятина, развитие которой приводит 
к «хлопку» и фактическому разрушению оболочки. Время до момен-
та «хлопка» лишь на 10–15 % превышает время до момента появле-
ния первой вмятины. Потеря устойчивости оболочки в условиях пол-
зучести материала может происходить при нагрузках выше нижней 
критической и значительно ниже критической нагрузки упругой обо-
лочки. Это обусловливает необходимость проведения оценки влия-
ния ползучести материала на несущую способность (разрушающую 
нагрузку) оболочки, находящейся длительное время в напряженном 
состоянии.  

Критерий устойчивости оболочки при наличии ползучести 
материала. Оценка влияния ползучести материала на несущую спо-
собность оболочки может быть проведена на основании различных 
критериев: критерия касательного модуля, динамического критерия, 
критерия начальных несовершенств, критерия критической деформа-
ции. Последний из перечисленных предложен в работах [5, 6] и ис-
пользован в данной статье. Его физический смысл состоит в том, что 
при накоплении в конструкции пластических деформаций жесткость 
оболочки падает. Элементы конструкции теряют устойчивость при 
определенной полной деформации независимо от того, является она 
упругой или упругопластической и какими факторами она вызвана. 
Иначе говоря, предполагается, что потеря устойчивости элемента 
определяется достижением критической суммарной деформации, ве-
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личину которой получают из решения соответствующей упругой или 
упругопластической задачи устойчивости.  

Критерий критической деформации довольно прост для практиче-
ского применения и хорошо согласуется с экспериментальными данны-
ми. Оценка критического времени потери устойчивости оболочки 
в условиях ползучести материала по величине упругой критической де-
формации соответствует значению нижнего критического напряжения 
сжатия и дает гарантированное нижнее значение критического времени 
потери устойчивости для оболочки при продольном сжатии [5–7].  

Величина предельной деформации ползучести может быть найде-
на путем определения критической деформации, соответствующей 
решению упругой задачи. В условиях ползучести материала критиче-
ская деформация складывается из упругой деформации и деформации 
ползучести. При известной нагрузке определяется соответствующая ей 
упругая деформация. Разница между критической и упругой деформа-
цией определяет предельную деформацию ползучести, соответствую-
щую потере устойчивости конструкции. По закону увеличения дефор-
мации ползучести можно определить значение упругой деформации, 
изменение которой влияет как на величину критической нагрузки, так 
и на время нахождения конструкции в нагруженном состоянии без 
разрушения.  

Изменение скорости деформации ползучести материала от вре-
мени нахождения под нагрузкой может быть описано степенной за-
висимостью [4, 8, 9] 

,   mB                                                 (1) 

где   — относительная деформация ползучести материала; ,B  m  — 
постоянные коэффициенты для данного материала при определенной 
температуре;   — напряжение от действующей нагрузки. 

Логарифмируя соотношение (1), получим lg lg lg .    B m  Оно 
демонстрирует линейную зависимость между логарифмами скорости 
деформации ползучести и напряжения, что позволяет при известных 
кривых ползучести находить коэффициенты B  и .m  Так, например, 
в работе [4] эти коэффициенты составляют: 

 для сплава АМг6-М 256 10 B  (см2/кг)m·1/сут, 6,15;m  

 для сплава АМг6-Н 311,5 10 B  (см2/кг)m·1/сут, 7,94.m  
Эти коэффициенты определяют стойкость конструкции к явле-

нию ползучести. В данном случае очевидно, что сплав АМг6-Н менее 
подвержен явлению ползучести, чем сплав АМг6-М. 

Математическая модель несущей способности гладкой ци-
линдрической оболочки с учетом ползучести материала. В соот-
ветствии с принятыми критериями устойчивости при заданном 
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напряжении   критическая деформация крп
 
ползучести и критиче-

ское время крt
 
потери устойчивости оболочки могут быть определе-

ны по формулам 

о
кр

кр ,
 

  п

E
  

о
кр

кр ,
 


m

t
EB

                              (2) 

где о
кр  — критическое напряжение упругой потери устойчивости 

оболочки; E  — модуль упругости материала оболочки. 
С помощью формул (2) можно оценить предельные возможности 

работоспособности конструкции при длительном нагружении. Напря-
жение, которое приводит к потере устойчивости оболочки за время 
хранения, может быть определено из уравнения 

о
кр кр

кр

( )
0.

 
  

t m
t

EBt
                                    (3) 

Здесь крt  — критическое напряжение оболочки с учетом ползучести 

материалов за время .t  
Формула (3) позволяет установить изменения критического напря-

жения в течение срока эксплуатации оболочки. 
Несущая способность оболочки с учетом деформации ползуче-

сти, накопленной за время t  длительного нагружения, определяется 
в соответствии с принятым критерием устойчивости по формуле 

o
кр кр p , tT T T                                           (4) 

где кр
tT  — несущая способность оболочки с учетом деформации пол-

зучести; o
крT  — несущая способность в начальный момент времени; 

pT  — уменьшение несущей способности в результате накопления 

в осевом направлении конструкции оболочки отрицательных дефор-
маций ползучести ,x  p сеч;  T EF  сечF  — площадь поперечного 

сечения оболочки. 
Для определения x  рассмотрим гладкую цилиндрическую обо-

лочку, нагруженную осевой силой ,N  внутренним гидростатическим 

давлением г ,P  внутренним избыточным давлением нP  наддува. 
Пусть ,R  ,  l  — начальные значения радиуса, толщины и длины 
оболочки соответственно. Их значения после времени нагружения t  
обозначим как ,tR  ,t  .tl  Напряжения в сечениях оболочки в момент 

времени t  определяются по формулам 
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0, R  н , 


t

t

P R
 н ,

2 2
  

  
t

x
t t t

P R N

R
 

где ,R  ,  x  — напряжения в радиальном, тангенциальном и осе-

вом направлениях; н г и. P P P  

Для определения скорости деформации ползучести используем 
уравнения [10, 11] 

1
( )( ),

2
   R Rf T  

1
( )( ),

2     f T  
1

( )( ),
2

    x xf T  

где ( ) ;
H

f T
T

 2 2 21
( ) ( ) ( )

6
        R xT  — интен- 

сивность касательных напряжений; 
1

( );
3     R x  H  

2 2 22
( ) ( ) ( )

3                  x x R R  — интенсивность скоростей 

сдвига. 
Если при этом зависимость интенсивности скоростей сдвига от 

интенсивности касательных напряжений, согласно [11, 12], примем 
в виде  

1 , mH B T  

где 
1

2
1 3 ,




m

B B  тогда 1
1( ) . mf T B T  

При степенном законе ползучести (1) интенсивность касательных 
напряжений запишем в виде 

и ,


t

t

P R
T k  

где 
21

;
3

 
k  .




 


x  

С учетом полученных соотношений получим 

1
2

,
6


  mB T
k

  
2 1

,
 

  


 x R
  

1
.


   


 R R

                 (5) 

В условиях длительного нагружения упругими деформациями 
и деформациями первого периода ползучести можно пренебречь, 
рассматривая лишь период установившейся ползучести. Тогда для 
скорости деформации в осевом и тангенциальном направлениях бу-
дут справедливы соотношения 
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и
1

1 2 1
,

6

  
     


m

t t
x

t t

dl P R
B k

l dt k
 

и
1

1 2
.

6
 

     


m

t t

t t

dR P R
B k

R dt k
 

Условие несжимаемости материала при ползучести имеет вид: 

,  t t tR l R l  сеч сеч  . t tlF l F                                  (6) 

Из уравнения (5) с учетом соотношений (6) получим: 

3
1

2 и
1

2
/ ;

6


               

m

t tR R P R
d dt B k

R k R
                      (7) 

2 1

2
,


   

 
t tl R

l R
    

2

1 2
.


       

t tR

R
                             (8) 

Деформация ползучести в тангенциальном и осевом направлени-
ях определяется из дифференциального уравнения (7): 

1,  tR

R
  

2 1

2
1.


    

 
t

x
R

R
                             (9) 

Деформацию ползучести в радиальном направлении вычислим из 
условия несжимаемости материала. Тогда изменение объема тела при 
деформировании представим в виде 

.   


                  x R x x R R x R
V

V
 

Так как в условиях ползучести 0, V  то из последнего соотно-
шения следует: 

.
1

 

  

     
 

      
x x

R
x

 

В случае если const,   уравнение (7) имеет решение в виде 

2

3
1 и1 .

2



        

m m
tR mB P R

k t
R k

                         (10) 
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В момент разрушения  

2

3
и ,



 
   

m
t

s

R P R

R
                                        (11) 

где s  — предел текучести материала. 

Подставив (11) в уравнение (10), получим время разрушения обо-
лочки при ползучести 

 

  
и

p

1 и

2 1 ( ) / ( )
.

( ) /

  
 



m
s

m

k P R
t

mB k P R
 

Из уравнений (9)–(11) имеем: 

2

3
и1 1 1,
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
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1

3
и
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1 1 1.


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m m

R
s

P R t

t
 

Если известно допустимое значение деформации ползучести, то 
время, соответствующее накоплению этой деформации, будет опре-
делять допустимый срок эксплуатации оболочки по условию накоп-
ления деформации. Зная величину осевой деформации оболочки, 
в соответствии с формулой (4) можем определить несущую способ-
ность оболочки для любого времени эксплуатации [13–18]. 

Для гладкой цилиндрической оболочки критическое напряжение 
потери устойчивости определяется по формуле 

o
кр 1 ,


  t

t

E
k

R
 

где 1k  — параметр критической нагрузки.  

Тогда p
2

.
3

    t tT ER  

Несущая способность оболочки в произвольный момент времени 

составит 2
кр 12 ( ).     t

t t t xT E k R  
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С учетом соотношений (8) и (9) для t  и x  будем иметь: 

 2 1 1 2

2 22
кр 12 1 .

  


 
  

                      

t t tR R
T Ek R

R R
                  (12) 

Алгоритм и пример расчета несущей способности оболочки. 
Формула (12) позволяет определить величину несущей способности 
в произвольный момент времени нахождения оболочки под нагрузкой. 
На рисунке отражено изменение несущей способности в зависимости 
от времени нахождения под нагрузкой. Алгоритм расчета несущей 
способности заключается в последовательном выполнении ряда опе-
раций, позволяющих при заданных исходных данных по геометрии 
оболочки, характеристиках материала и величине действующих нагру-
зок получить значение критической деформации ползучести и несу-
щей способности оболочки. 

 

Рисунок. Зависимость несущей способности от вре-
мени нахождения оболочки под нагрузкой: 

1 — сплав АМг6-Н, 
н max

;P P  2, 3 — сплав АМг6-М, 

н min
P P  и 

н max
P P  соответственно 

 
Для этого по отношению к гладкой цилиндрической оболочке 

следует: 
 задать геометрические параметры оболочки; 
 определить механические характеристики материала оболочки; 
 найти коэффициенты, определяющие скорость деформации 

ползучести, используя кривые ползучести материала; 
 задать величины действующих на оболочку нагрузок; 
 вычислить величину критической деформации ползучести и 

критическое время потери устойчивости оболочки (2); 
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 определить критическое напряжение оболочки с учетом ползу-
чести материала (3); 

 вычислить изменение геометрических параметров оболочки 
вследствие ползучести (8), (10); 

 определить несущую способность оболочки в произвольный 
момент времени нахождения под нагрузкой. 

В качестве исходных данных принято: 150R  см; 0,375   см; 
7,2E  кг/см2; г 1,08P  кг/см2; нmax 1,9P  кг/см2; нmin 0P  кг/см2. 

Материал оболочки: сплавы АМг6-М с коэффициентами ползучести 
256 10 B  (см2/кг)m·1/сут, 6,15,m  и АМг6-Н с коэффициентами 

ползучести 311,5 10 B  (см2/кг)m·1/сут, 7,94.m  
Согласно расчетам, несущая способность оболочки при заданном 

уровне продольной нагрузки зависит от двух факторов длительного 
нагружения: величины избыточного давления наддува и коэффи-
циентов ползучести материала оболочки. Для обеспечения стабиль-
ности несущей способности оболочки при длительном нагружении 
следует предусмотреть создание таких условий работы оболочки, при 
которых исключаются резкие перепады давления наддува, давление 
находится вблизи нижней границы возможных значений, а также ис-
пользовать в конструкции оболочки материал, устойчивый к ползу-
чести. 

Выводы. 1. Предложенный метод оценки несущей способности 
гладкой цилиндрической оболочки позволяет определить при задан-
ном уровне нагрузок в условиях ползучести материала закон измене-
ния несущей способности от времени нахождения оболочки под 
нагрузкой. 

2. Установлено, что несущая способность оболочки при длитель-
ном нагружении зависит от уровня действующих нагрузок и характе-
ристик ползучести материала оболочки.  

3. Обеспечение стабильности несущей способности оболочки для 
значительного периода эксплуатации может быть достигнуто путем 
оптимального выбора нагрузок и использования конструкционных 
материалов, устойчивых к явлению ползучести. 

4. Результаты работы могут быть использованы при оценке рабо-
ты технических систем, имеющих в своем составе цилиндрические 
оболочки, при длительных сроках эксплуатации. 
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Modeling of load-bearing capacity of a smooth 
cylindrical shell under conditions of material creep 
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The study introduces a method for calculating the load-bearing capacity of a smooth cy-
lindrical shell, which has been under the action of axial and transverse loads for a long 
time. We assume that with prolonged loading, the shell material is subject to the phe-
nomenon of creep, which in turn affects the load-bearing capacity of the shell. As a re-
sult, we obtained relations that made it possible to estimate this influence. 
 
Keywords: load-bearing capacity, destructive load, cylindrical shell, creep, deformation, 
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