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Предложена модель упругопластического деформирования конструкционных спла-
вов в условиях сложного неизотермического нагружения, основанная на теории 
пластического течения. Получены соотношения, позволяющие определить пара-
метры модели по результатам испытаний образцов по программе жесткого сим-
метричного циклического деформирования. Разработан алгоритм получения па-
раметров пластичности по ограниченному набору экспериментальных данных. На 
основе разработанного алгоритма получены параметры пластичности для нике-
левого сплава IN738LC в широком диапазоне температур. 
 
Ключевые слова: пластичность, сложное деформирование, неизотермические усло-
вия, определение параметров  

 
Введение. Проблема оценки напряженно-деформированного со-

стояния и ресурса деталей высоконагруженных конструкций являет-
ся комплексной и тесно связана с проблемой разработки адекватных 
моделей неупругости, пригодных для практического применения 
и способных описывать сложные неизотермические процессы нагру-
жения. Созданию таких моделей неупругости посвящено значительное 
число работ [1–9], в основном в них рассмотрены соотношения при 
изотермическом деформировании. Исследованию неизотермического 
деформирования и определению параметров рассматриваемых моде-
лей посвящено ограниченное количество работ [1–3, 6, 9], что сущест- 
венно усложняет применение таких моделей при инженерных расче-
тах. В настоящей работе предложен вариант модели инвариантной 
теории пластического течения [1, 2], предназначенный для описания 
упругопластического поведения металлических конструкционных 
сплавов при неизотермическом нагружении, и подробно рассмотрен 
алгоритм определения параметров этой модели. 

Основные соотношения инвариантной теории пластичности 
для случая неизотермического нагружения. Согласно теории тече-
ния [1, 2], примем, что при деформировании материала приращения 
упругих деформаций e

ijd  и пластических деформаций  p
ijd  незави-

симы. Полное приращение деформаций ijd  представим в виде 

.    e p
ij ij ijd d d                                            (1) 
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Приращения упругих деформаций определим согласно обобщенному 
закону Гука.  

Рассмотрим неизотермическое деформирование однородных и 
начально изотропных материалов, изменение объема которых проис-
ходит упруго. В этом случае тензоры пластических деформаций и их 
приращений образуют девиаторы. 

В соответствии с инвариантной теорией пластичности [1, 2] 
в пространстве, образованном компонентами тензоров напряжений ,ij  

пластических деформаций  p
ij  и температурой T  рассмотрим поверх-

ность деформирования, на которой находится точка, отображающая те-
кущее состояние процесса неупругого деформирования. Для ряда мате-
риалов, свойства которых изотропно изменяются под действием 
температуры, эта поверхность имеет вид: 

1 2 2          ( , , , , , , , , ) 0;       f J J E D N R M T                              (2) 

 
1 2 2

1 2

, , , ,

, , , ,

        

           

p p p
ij ij ij ij ij ij ij ij

p p p
ij ij ij ij ij ij ij ij

J J s s E D s

N R M s d d d
           (3) 

где 
1

3
    ij ij ij ijs  — компоненты девиатора тензора напряжений; 

ij  — компоненты структурного тензора, отвечающего за анизотро-

пию, приобретенную в процессе упругопластического деформирова-

ния; ( , ) ;


    


p
ijp

ij ij ij
ip

d
d K d

d
 ( , )  p

ij ijK  — функция материала; 

ip  — интенсивность пластических деформаций;   — параметр Од-

квиста. 
Области упругого и упругопластического деформирования разделе-

ны поверхностью нагружения 1,f  являющейся подповерхностью (2), 

при фиксированных значениях компонент пластической деформа- 

ции , p
ij  параметра накопленной пластической деформации   и струк-

турного тензора :ij  

1 1 2 2

const

              ( , , , , ; , , ,  ) 0.  f f J J D M T E N R                         (4) 

Условия активного нагружения имеют вид: 1 10 0.  f df  Ис-

пользуя ассоциированный с поверхностью (4) закон пластического 
течения, согласно [1, 2], при активном нагружении получим: 
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,   p p p
ij kl ijijkld C d dT                                       (5) 

где 0 01
;   


p

ij klijklC  0 1 ;


 
ij

ij

f

s
 011

;
       

p
ij ij

f

T
   — функция 

упрочнения. 
В работах [1, 2] показано, что, рассматривая различные варианты 

поверхности (2) на основе соотношений (1)–(5), можно построить 
различные модели упругопластического поведения материала без 
изменения структуры соотношений. 

Определяющие соотношения модели. Для случая неизотерми-
ческого нагружения рассмотрим следующий вид поверхности: 

 22
2 2 ) ) ) 0.        Tf J a T M a T N T               (6) 

Здесь ),a T  ) T T  — параметры материала, зависящие от накоп-

ленной пластической деформации   и текущего значения температу-
ры процесса .T  С учетом результатов работы [2] уравнение поверх-
ности нагружения (6) представим как 

 20 0 4 ( , ) 0,     ij ij T T                                   (7) 

где  0 2 ) .    ij ij ijs a T  

Для удобства дальнейших рассуждений запишем уравнение (7) 
в виде 

    2) ) ( , ) .        ij ij ij ij Ts a T s a T T                    (8) 

Тогда условия активного нагружения (4) принимают вид 

 20 0 0 ( , )( , )
4 ( , ) 2 ( , ) ,

                
T

ij ij T ij ij ij T
Ta T

T ds dT T dT
T T

(9) 

а функция упрочнения 

0 0 0 0( , )( , )
( , ) 2 ( , ) .

2

   
              

T
ij ij T ij ij

Ta T N
a T K T

K
   (10) 

Примем, что для ряда материалов приращения компонент струк-
турного тензора ij  можно определить как 

2( ) .   p
ij ijd K J d                                           (11) 
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Здесь 2( )K J  — независящая от температуры процесса характеристи-

ка материала, определяемая в каждый момент времени только уров-
нем напряжений.  

Определение параметров модели. Важнейшим этапом разра-
ботки любой модели поведения материала, предназначенной для 
дальнейшего практического использования, является этап создания 
алгоритмов идентификации параметров материала, входящих в соот-
ношения модели.  

Предложенная модель пластичности содержит три функции ма-
териала, характеризующие его пластические свойства и подлежащие 
экспериментальному определению: 2( ),K J  ( , )a T  и ( , ). T T  Для 

определения этих функций используем петли жесткого симметрично-
го изотермического циклического деформирования для разных фик-
сированных значений температур. При одноосном нагружении и по-
стоянной температуре уравнение поверхности (8) и ее производная 
по   принимают вид: 

2
2

1 11 11
3 2

) 0;
2 3
        
 

Tf a                           (12) 

11 11
11 11 11

2 2
3 2 .

3 3

                     
T

T
d d df da

a a
d d d d

       (13) 

Функция 2( )K J  не зависит от накопленной пластической деформа-

ции, поэтому для ее определения целесообразно рассмотреть стабиль-
ный предельный цикл, в котором пластические свойства материала не 
изменяются в зависимости от   Введем обозначения для параметров 

материала ( , )a T  и ( , ) T T  в предельном цикле ( )st sta a T  и 

( )  st st
T T T  соответственно: 

0.


 
 

stst
Tdda

d d
 

Для предельного цикла из уравнения (13) получаем: 

11 11
11 11

2 2
0.

3 3

             
st std d

a a
d d

                       (14) 

Если первый множитель левой части уравнения (14) обращается 

в ноль, то и второй инвариант тензора 0ij  (9) также обращается 

в ноль. Это, согласно (10), приводит к обращению в ноль функции 
упрочнения, что недопустимо в рамках предложенных соотношений 
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при вычислении приращений пластических деформаций (5). Таким 
образом, из уравнения (14) получаем:  

11 112
0.

3

 
 

 
std d

a
d d

 

После несложных преобразований и учета (11) приходим к выра-
жению 

11
2

11

2
( ) .

3 ( )




st p

d
K J

a T d
                                 (15) 

Предположим, что функция 2( )K J  является единой функцией 

для рассматриваемого материала и не зависит от температуры, и при-
ведем выражение (15) к безразмерному виду следующим образом. 
Положим  

2
( ) ( ).

3
st st

Xa T E T                                      (16) 

Здесь    st p
XE  — хордальный модуль кривой предельного ста-

бильного симметричного цикла, построенного в координатах 1111 , p  

где   и  p  — размахи напряжений и деформаций в полуцикле при 

активном нагружении соответственно (рис. 1, а).  

            

 
Рис. 1. Определение параметров модели по данным жесткого симметричного 

изотермического циклического деформирования 
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Необходимо отметить, что такой выбор ( )sta T  накладывает огра-
ничения на использование модели. Определение параметров может 
проводиться по набору экспериментальных кривых с различными 
размахами деформаций и напряжений соответственно, поэтому в об-

щем случае хордальный модуль st
XE  определяет не только значение 

температуры, но и размах деформаций в цикле. Соотношения (15), 
(16) требуют, чтобы хордальные модули кривых предельных ста-
бильных симметричных циклов совпадали для различных размахов 
деформаций и одного значения температуры. 

Учитывая (16), из соотношения (15) получим зависимость каса-
тельного модуля обезразмеренной кривой деформирования от уровня 
напряжений 

1111 11 11
2

1111 11 11

1
( ) ,

( )

  
  

   




p

st p p p
X

dd d
K J

E T d d d
                     (17) 

где 11,  11, p  2
J  — обезразмеренные величины; 

 2 22

3
.

2 ( )



J J

T
 

Определим параметры ( , )a T  и ( , ). T T  Зафиксируем температу-

ру и рассмотрим произвольный симметричный жесткий цикл в коорди-
натах осевых деформаций 11  и напряжений 11  (рис. 1, б). Из уравне-

ния (12) аналогично [1, 2] для точек А и B получим систему: 

2 2
;

3 3

2 2
.

3 3






    



      

T

T

a

a

                                    (18) 

Здесь ,    — значения осевых напряжений A и В соответственно; 

11    в точках А и В (компоненты структурных тензоров в этих точ-

ках совпадают, так как приращения пластических деформаций на от-
резке АВ не происходит).  

Решая систему (18) относительно T  и ,a  получаем: 

, .
36

      
  

T a                               (19) 

Для первоначально изотропного материала до начала активного 
нагружения пределы текучести на растяжение и сжатие равны, зна-

чит 0.      При этом 0,   поэтому соотношение для a  не 
определено. Значение (0, )a T  можно найти следующим образом: 
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 2(0, ) / 6 ,
 

  
     

a T K J                           (20) 

где ( ),      ( )      — функциональные зависимости, опре-

деленные по данным циклического нагружения; 2 2
2 11( ) / .   J  

Соотношения (17), (19) и (20) позволяют определить параметры 
пластичности материала по данным простого циклического жесткого 
симметричного деформирования при фиксированных значениях тем-
пературы.  

Параметры ( , )a T  и ( , ) T T  для промежуточных значений тем-

пературы вычислим с учетом того, что ( , )a T  определяет положение 

центра поверхности (8), а ( , ) T T  — ее размеры.  

Тогда при фиксированных значениях пластических деформаций, 
параметра Одквиста и компонент структурного тензора ij  в прост- 

ранстве напряжений существует семейство поверхностей нагруже-
ния, радиус и положение центра которых определяются текущим 
значением температуры. Зависимость ( , ) T T  для промежуточных 

значений температур 1 2 T T T  определяем, используя зависимость 

предела текучести от температуры ( ) 3 2 (0, )  yield TT T  и полу-

ченные, согласно (19), для фиксированных значений температур за-
висимости 1( , ), T T  2( , ): T T  

2
1

2 1

1
2 1 2

2 1

( ) ( )
( , ) ( , )

( ) ( )

( ) ( )
( , ), .

( ) ( )

 
     

 

 
    
 

yield yield
T T

yield yield

yield yield
T

yield yield

T T
T T

T T

T T
T T T T

T T

            (21) 

Для определения ( , ),a T  используя зависимости 1( , ),a T  2( , )a T  

и зависимость хордального модуля в предельном цикле от темпера-

туры ( )st
XE T , получим: 

2 1
1 2

2 1 2 1

1 2

( ) ( ) ( ) ( )
( , ) ( , ) ( , ),

( ) ( ) ( ) ( )

.

 
    

 
 

st st st st
X X X X
st st st st
X X X X

E T E T E T E T
a T a T a T

E T E T E T E T

T T T

        (22) 

Параметры пластичности никелевого сплава IN738LC. В ка-
честве примера рассмотрим алгоритм определения параметров моде-
ли никелевого сплава IN738LC. Кривые циклического деформирова-
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ния взяты из работы [10]. Размахи деформаций и номера имеющихся 

циклов приведены в таблице. На рис. 2 в координатах 1111 p  пред-

ставлены предельные циклы. 

Экспериментальные данные жесткого симметричного циклического 
деформирования образцов из никелевого сплава IN738LC 

, CT  
Размах полных деформаций 

,  % Номер цикла 
Номер цикла, принимаемого 
в качестве предельного 

24 

1,20 1; 85 85 

1,40 1; 13 13 

1,60 1; 24 24 

750 

1,32 30 30 

1,52 1; 5; 10; 20 20 

1,72 1; 9 9 

850 
1,20 1; 26 26 

1,64 1; 12 12 

 

Рис. 2. Экспериментальные кривые деформирования циклов [10], принятых 
в качестве предельных для сплава IN738LC при: 

 — 24° С;  — 750° С;  — 850° С 

 
Эти циклы получены в результате экспериментов на жесткое сим-

метричное циклическое изотермическое деформирование с размахами 
полных деформаций в диапазоне 1,2…1,72 %. Для IN738LC величина 
хордального модуля кривой деформирования (см. рис. 2) характеризу-
ется в большей степени температурой процесса, нежели размахом де-



Ю.М. Темис, А.Д. Худякова 

28 

формаций. Так, для нечетных полуциклов (полуциклов растяжения), 
хордальные модули кривых при 24° С лежат в диапазоне 215…380 ГПа 

(   %,   p  % и    %,   p  % соответствен-

но), для 750° С — в диапазоне 170…320 ГПа (     p  

и      p  соответственно). При 850° С эти модули кри-

вых находятся в диапазоне 105…150 ГПа (     p  % 

и    %,   p  % соответственно). Исходя из этого, пред-
ставляется возможным применять разработанную модель для описа-
ния поведения сплава IN738LC. 

Для каждого из трех значений температуры строим по кривым 
полуциклов растяжения (см. рис. 2) усредненную кривую. Для этого 
определяем средние значения минимального min  и максимального 

max  напряжений кривых полуциклов растяжения для каждого зна-
чения температуры: 

( ) ( )
min max maxmin

1 1

1 1
, ,

 

      
N N

i i

i iN N
                      (23) 

где N  — количество экспериментальных кривых; ( )
min i  и ( )

max i  — ми-

нимальные и максимальные значения 11  i-й кривой соответственно 
для данного уровня температуры. При необходимости используем ли-
нейную экстраполяцию для продления кривых до достижения min  и 

max .  Вводим равномерную сетку по оси напряжений   1

1


 M

k k
 

(M — количество узлов сетки) на отрезке min max[ , ].   Для каждого 

уровня напряжений min max    k  определяем координаты точки 

усредненной кривой: ( )

1

1
, .



 
  

 

N

p i
kk

iN
 Соединяя полученные точ- 

ки, путем линейной интерполяции получаем усредненную кривую 
(рис. 3, а). На рис. 3, б представлены усредненные кривые, построен-
ные для материала IN738LC. 

Величины хордальных модулей построенных кривых составляют 
255 ГПа для 24° С (  p  %), 216 ГПа для 750° С (  p  %) 

и 115 ГПа для 850° С (  p  %). 

Так как согласно соотношению (17), 2( )K J  представляет собой 
зависимость касательного модуля обезразмеренной кривой деформи-
рования от уровня напряжений, обезразмерим полученные выше 
усредненные кривые и построим их в одной системе координат 

1111 ,  p  связанной с нижней точкой каждой из кривых.  
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Рис. 3. Схема построения усредненной кривой (а) и усреднен-
ные кривые предельных циклов для сплава IN738LC (б) при: 

 — 24° С;  — 750° С;  — 850° С;  — получен-
ные точки усредненной кривой 

 

Кривые совпадают между собой в допустимых пределах, что поз-
воляет построить единую для всех температур усредненную обезраз-
меренную кривую (рис. 4, a). Функциональную зависимость 2( )K J  

для материала IN738LC определяем по этой кривой, записывая соот-
ношение (17) в конечных приращениях 

 2 11
2 11

11

( ) .


  


 
 p

K J K                                     (24) 

Тогда в точке М каждой усредненной кривой деформирования 
(рис. 4, б) значение 2( )K J  вычисляем по формуле 

 
( ) ( )2( ) 11 11

2 11 ( ) ( )
11 11

( ) ,
     

    

  
 

N M
M

p N p MM
K J K                     (25) 

где ( )
11 , M  ( )

11 N  и ( )
11 , p M  ( )

11 p N  — значения напряжений и пластиче-

ских деформаций в точках M и N соответственно. Полученная зави-
симость 2( )K J  изображена на рис. 5.  
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Рис. 4. Обезразмеренные усредненные кривые предель-

ного  цикла  для  IN738LC  (а)  и определение 11 11/  p    

по усредненной кривой (б): 
 — 24° С;  — 750° С;  — 850° С;  — единая 

усредненная кривая 

 

Рис. 5. Зависимость 2( )K J  для никелевого сплава IN738LC 
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Определим функциональные зависимости ( )a   и   T   для 

трех значений температур, используя соотношения (18), (19). Для 
этого необходимо располагать значениями накопленной пластиче-
ской деформации   и компонент структурного тензора   в точке А 
(см. рис. 1, а) каждого рассматриваемого цикла, номера которых 
представлены в таблице, а также значениями   и   в точках А и В 
для этих циклов. 

При циклическом одноосном деформировании приращение 
накопленной пластической деформации в цикле с номером n  опре-

делим по формуле 6 ,   p
n n  где  p

n  — размах пластических 
деформаций в рассматриваемом цикле. Таким образом, для получе-
ния значения накопленной пластической деформации ,N  достигну-
того к началу N-го цикла, можно использовать соотношение 

1

0
1

3
6 ,

2





    
N

p p
N n

n

                                (26) 

где 11
110 ( )


   p

E T
 — значение пластической деформации; 11,  11  — 

осевые напряжения и деформации в точке А первого цикла; ( )E T  — 
модуль упругости материала, зависящий от температуры. Для исполь-
зования формулы (26) размахи пластических деформаций в промежу-
точных циклах определим путем линейной интерполяции, построив на 
основе имеющихся данных зависимость размаха пластических дефор-
маций от номера цикла для известных кривых. Такой проблемы не 
возникает при наличии петель деформирования во всем диапазоне 
циклов: от первого до цикла, выбранного в качестве стабильного. 
В этом случае размахи пластических деформаций на полуциклах из-
вестны, и значения N  можно получить, используя соотношение 

 
1

( ) ( )
0

1

3 3
,

2 2


 



      
N

p p p
N n n

n

                        (27) 

где ( ) , p
n  ( ) p

n  — размахи пластических деформаций на цикле 
с номером n в полуциклах растяжения и сжатия соответственно. Для 
восстановления петель циклического деформирования также может 
быть использована трехпараметрическая модель [11].  

Величину 0 ,  значение 11  в точке А первого цикла определяем 
по первоначальной кривой деформирования, используя формулу (11) 
и функцию 2( ).K J  Значение 11  в точке А предельного стабильного 

цикла st  можно определить из соотношения (19) с учетом выраже-
ния (16): 
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( ) ( )

,
2

   
 

st st
st

st
XE

                                      (28) 

( ) , st  ( ) st  — величины   и   (см. рис. 1, б) для предельного 

стабильного цикла. Значение 11  в точке А для циклов, отличных от 

первого и предельного, получаем аналогично ,N  строя линейную 

зависимость этого значения от номера цикла. Как и для накопленной 
пластической деформации, при наличии всех петель промежуточные 
значения 11  могут быть определены более точно с использованием 

формулы (11). 
Определив значения накопленной пластической деформации в 

нужных точках имеющихся циклов, строим графики ( )   и ( )   
для каждого из трех значений температур, на основании которых, ис-
пользуя соотношение (19), получаем зависимости ( ) T   для трех 

значений температур (рис. 6 и 7, б соответственно). 

 

Рис. 6. Зависимости ( )   и ( )   для никелевого сплава IN738LC: 
,  — 24° С; ,  — 750° С; ,  — 850° С 

 
На рис. 7, а в виде поверхности представлена зависимость 

( ) T   для всех значений температур в интервале 24 С 950 C,     T  

сплошными черными линиями отмечены графики опорных зависимо-
стей   T   при , 24 C T  750  C, T  C 850 T  и ( ).yield T  Для 

построения поверхности ( ) T   по опорным зависимостям была ис-

пользована формула (21) при 1 24 C, T  2 75  0 C T  и при 1 750  C, T  

2 85  0 C T  соответственно. Для 850 С < 950 C    T  была использова-

на формула 1
1

( )
( , ) ( , ),

( )


    


yield

T T
yield

T
T T

T
 1 850 C. T  
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Рис. 7. Параметр пластичности ( ) T   для сплава IN738LC в темпера-

турном диапазоне от 24° С до 950° С (а) и опорные зависимости (б) при: 
 — 24° С;  — 750° С;  — 850° С 

 
Аналогично, используя соотношение (19), полученные зависимо-

сти ( )   и ( )   и вычисленные значения   получаем зависимо-
сти ( )a   для трех значений температур (рис. 8, б). На рис. 8, а 
в виде поверхности представлена зависимость ( )a   для всех значе-
ний температур в интервале 24 С 950 C,   T  сплошными черными 
линиями отмечены графики опорных зависимостей ( )a   при ,T  

равной 24° C, 750° C и 850° C, а также ( ).st
XE T  Для построения по-

верхности ( )a   по опорным зависимостям была использована фор-

мула (22) при 1 24  C, T  2 75  0 C T  и при 1 750  C, T  2 85  0 C T  

соответственно. Для диапазона 850 С < 950 C    T  применялась фор-

мула 1
1

( )
( , ) ( , ),

( )
  

st
X
st
X

E T
a T a T

E T
 где 1 850  C. T  
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Рис. 8. Параметр пластичности ( )a   для сплава IN738LC 

в температурном диапазоне от 24° С до 950° С (а) и зависимости 
для трех значений температур (б): 

,  — 24° С; ,  — 750° С; ,  — 850° С 
 
Заключение. Предложена модель поведения конструкционных 

материалов в условиях сложного неизотермического нагружения. 
Разработан алгоритм определения параметров предложенной модели 
по данным жесткого циклического деформирования. На примере ни-
келевого сплава IN738LC продемонстрировано применение разрабо-
танного алгоритма для получения параметров пластичности в диапа-
зоне температур 24°…950° С. Параметры могут быть уточнены при 
наличии большего количества петель жесткого циклического дефор-
мирования. Соотношения предложенной модели могут быть про-
граммно реализованы и использованы для расчета напряженно-
деформированного состояния высоконагруженных конструкций, ра-
ботающих в условиях сложного неизотермического нагружения. 
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The study introduces a model of elastoplastic deformation of structural alloys under con-
ditions of complex nonisothermal loading. The model is based on the plastic flow theory. 
Within the research we derived the relations that made it possible to determine the pa-
rameters of the model using the results of sample tests according to the program of rigid 
symmetric cyclic deformation. Moreover, we developed an algorithm for determining the 
plasticity parameters from a limited set of experimental data. Based on the algorithm de-
veloped, we obtained the plasticity parameters for the nickel alloy IN738LC over a wide 
temperature range. 
 
Keywords: plasticity, complex deformation, non-isothermal conditions, parameter deter-
mination  
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