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Предложена аналитическая зависимость для расчета давления на поверхности за-
тупленных конусов, обтекаемых сверхзвуковым потоком газа, с учетом разрыва 
кривизны образующей. Для определения свободных параметров зависимости приме-
нялись генетический алгоритм и каскадные методы оптимизации функционала ме-
тода наименьших квадратов. Полученные результаты даны в сравнении со строгим 
численным решением невязкой задачи. Сравнение показывает, что возможно ис-
пользовать аналитическую формулу для распределения давления по поверхности 
в широком диапазоне чисел Маха при разных углах полураствора конуса. В отличие 
от известных работ предлагаемая зависимость позволяет учесть разрыв кривизны 
образующей в точке сопряжения сферы с конической поверхностью. 
 
Ключевые слова: сверхзвуковой поток, разрыв кривизны образующей тела, гене-
тический алгоритм 
 

Введение. Затупленный конус и сфера получили широкое рас-
пространение как элементы более сложных аэродинамических ком-
поновок, поэтому исследованию их обтекания посвящено большое 
количество работ [1–5]. Так, нередко головные части летательных 
аппаратов представляют собой затупленные по сфере конусы с раз-
личными углами полураствора. В работах [6, 7] предпринята попытка 
вывести аналитические зависимости для распределения давления на 
затупленных конусах. На поверхности сферы такие аппроксимации 
получены [8–10], а на прямолинейной образующей, поскольку здесь 
распределение давления не является монотонным в силу разрыва 
кривизны в точке сопряжения сферы с конусом, предложенные ранее 
зависимости имеют недостатки. Например, в статье [6] имеет место 
нефизичный скачок давления при переходе от сферы к конусу, а 
в работе [7] присутствует свободный параметр, который нельзя одно-
значно определить для конусов с разными углами полураствора 
и режимами обтекания. Вместе с тем простые формулы имеют важ-
ное значение как на этапе предварительной оценки волнового сопро-
тивления затупленных частей летательных аппаратов или тепловых 
потоков к их поверхности [11, 12], так и при задании начальных дан-
ных при использовании метода установления по времени для полу-
чения стационарного решения. 
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Цель данной работы — разработка аналитической зависимости, 
лишенной упомянутых выше недостатков и хорошо аппроксимиру-
ющей так называемую ложку в распределении давления на поверхно-
сти затупленных конусов, которая обусловлена наличием разрыва 
кривизны образующей. 

Общие положения. Основной характеристикой для определения 
локальных нагрузок на поверхности тела является давление. Далее 
рассуждения строятся применительно к коэффициенту давления, 
определяемому по формуле 

 2
,
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где P  — давление в некоторой точке на поверхности тела; ,P  ,  

V  — давление, плотность и скорость набегающего потока соответ-

ственно.  

Связь между давлением P  набегающего потока и давлением 0P   
в точке торможения устанавливается формулой Релея 
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Здесь   — показатель адиабаты (для рассматриваемого в данном 

случае совершенного газа 1,4);   M  — число Маха набегающего 

потока. 
С учетом (1) запишем формулу для коэффициента давления 
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Расчет давления на поверхности затупленного конуса разобьем 
на две части: расчет давления на сферической части конуса при 

 ;0nx x   и расчет давления конической части при (0; , kx x  где 

координата x  направлена по оси тела ( nx  соответствует точке тор-

можения; 0x   — точке сопряжения сферы с прямолинейной обра-
зующей конуса; kx  — расстояние между абсциссами точек сопряже-

ния и текущего положения на оси конуса). При стремлении kx  

к бесконечности соответствующее давление асимптотически стре-
мится к давлению острого конуса. 

Расчет давления на сферической части конуса. Для определе-
ния давления на сферической части конуса воспользуемся представ-
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ленным в работах [8–10] методом. Согласно [9], давление сф 0/P P P   

на отрезке  ;0nx  от точки торможения до точки сопряжения сфери-

ческой и конической частей конуса рассчитывается по формуле 

2 1

2
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1
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  

     

P k

kP
                                          (3) 

где 
 2
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k  **  — положение звуковой точки на по-

верхности сферы; ( / 2);       — угол между продольной осью 
тела и вектором скорости в произвольной точке на поверхности сфе-
ры [9, 13]. 

Расчет давления конической части. В качестве основы для раз-
работанной аналитической формулы было использовано выражение, 
представленное в статье [6]. Однако оно имеет ряд недостатков: 

 в точке сопряжения давление справа асимптотически стремит-
ся к бесконечности; 

 точка, определяющая место выхода на давление острого конуса 
в координатах подобия, является фиксированной; 

 кривая перехода, описываемая тремя слагаемыми и отвечаю-
щая за образование локального разряжения, терпит разрывы. 

Из анализа экспоненциального угасания влияния сферического 
затупления на распределение давления на затупленном конусе была 
принята формула, состоящая из двух слагаемых: первое отвечает за 
непрерывный переход от сферической части к конической и экспо-
ненциальное убывание влияния сферы, второе — за нарастание влия-
ния конической части и стремление к давлению острого конуса на 
бесконечности. 

Таким образом, искомая формула имеет вид 
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Здесь 
з.кPС  — искомый коэффициент давления на затупленном кону-

се; 
сф .сопрPC  — коэффициент давления сферы в точке сопряжения с ко-

нусом, определяемый формулами (2) и (3); k  — угол полураствора 

конуса; 
о .кPC  — коэффициент давления острого конуса;   и *  — 

параметры гиперзвукового подобия; *f  — коэффициент перехода на 

давление острого конуса;  M , k     — функция, подлежащая 
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определению (в формуле (4)   является показателем степени числа 
Маха набегающего потока M ).  

Параметры гиперзвукового подобия   и *,  как и в статье [6], 
имеют следующий вид: 
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Здесь 
сфx

C  — коэффициент сопротивления сферического затупле-

ния;   сопрtg kr x r     — цилиндрический радиус сечения кониче-

ской части тела; сопрr  — цилиндрический радиус в точке сопряжения 

сферической и конической частей. 
Для определения коэффициента перехода *f  модифицируем 

представленную в статье [6] формулу: 
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Входящая в формулу (7) зависимость  M , k     представля-

ет собой координату точки выхода на значение давления для острого 
конуса и будет найдена ниже. 

Коэффициент давления на остром конусе с хорошей точностью 
определяется по предложенной в работе [14] формуле 

  22
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2 3 4 5
2 1 1 1 1 10,18146 2,0923 9,092 6,876 62,25 97,1 ,k k k k k k       

где   2
1 0,1 lg M 1 sin .kk      

Определение свободных параметров λ и ψ. Для нахождения сво-
бодных параметров как функций от аргументов, задающих режим обте-
кания, использованы данные [15] распределения давления на затуплен-
ных конусах. Для этого была решена задача минимизации функционала 

метода наименьших квадратов (МНК)  
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кадным методом оптимизации. Здесь P iC


 — известные узловые значе-

ния коэффициента давления.  
Трудно сразу установить зависимости     или   ,   поэтому 

на первом этапе велся поиск значения  M , , ,opt k opt      т. е. для 

каждого opt  подбиралось opt  при заданном opt . Из множества пар 

 ,opt opt   выбирали ту, которая доставляет минимум функционала 

МНК. 
По полученным данным с применением генетического алгоритма 

[16] оптимизации были построены аппроксимации для функций 
 M , k     и  M , :k     

       2
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M M
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 
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Здесь под функцией  M , kF    подразумевается либо параметр 

 M , ,   k  либо  M , .   k  

Были получены следующие коэффициенты функции вида (8) для 
параметра  M , :   k  
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и параметра  M , :   k  
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Все представленные выше коэффициенты были определены как 
функции аргумента ,k  заданного в градусах. Локализация миниму-

ма функционала  
2

0

n

P P ii
i

C C x




  
 

 в ортогональных координатах   

и   представлена на рис. 1. 

 

 

Рис. 1. Локализация минимума функционала в координатах   и   

 
Формулы (3)–(7) наряду с аппроксимацией (8) свободных пара-

метров   и   позволяют определить давление на поверхности кону-
са со сферическим затуплением. 



Моделирование сверхзвукового обтекания затупленных конусов… 

87 

Анализ результатов. Приведем результаты применения форму-
лы (4). На рис. 2 представлены распределения давления /P P  для чи-

сел Маха M 4.   
 

 

 

 

Рис. 2 (начало). Распределение давления /P P


 при M ,


 

равном 4 (а), 6 (б), при угле полураствора конуса (град): 
,  — 5; ,  — 10; ,  — 15; ,  — 25; 

табличные данные обозначены маркерами, данные расчетов —  
линиями 
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Рис. 2 (окончание). Распределение давления /P P


 при M ,


 

равном 7 (в), 20 (г), при угле полураствора конуса (град): 
,  — 5; ,  — 10; ,  — 15; ,  — 25; 

табличные данные обозначены маркерами, данные расчетов —  
линиями 

 
Сравнение результатов расчетов /P P  при M 10  , 1k   град 

по формуле (4) и формуле, представленной в статье [6], а также стро-
гого численного решения системы уравнений Эйлера по приведен-
ному в работе [17] методу показано на рис. 3, а. Стоит отметить, что 
кривая давления, построенная в статье [6], терпит разрыв значений в 
одной из точек переключения, что можно увидеть на рис. 3, б 
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в сравнении с результатами расчета по формуле (4) и табличными 
данными [15] при M 8   и 15k   град, а также в работе [17]. 

 

 

 

Рис. 3. Сравнение результатов расчета (а) и разрыв кри-

вой (б) давления / :


P P  

 — расчет по формуле работы [6];  — расчет по форму-
ле (4);  — численное решение уравнений  Эйлера;  — таб- 

личные значения [15] 

 
Из сопоставления результатов следует, что расчет распределения 

давления по формуле (4) дает практическое согласование с числен-
ным решением невязкой задачи [15]. При этом относительная по-
грешность решения не превышает 7 % для чисел Маха набегающего 
потока M 4   и углов полураствора конусов k  = 1…25 град.  
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Отметим, что применение формулы (4) не только дает возмож-
ность правильно уловить «ложку», но и асимптотически выйти на так 
называемую полку, т. е. на постоянное давление острого конуса, что, 
например, не реализовано в статье [6]. Это свидетельствует о том, 
что формула (4) согласуется с физическим процессом. 

Заключение. Анализ известных работ, посвященных аналитиче-
ским методам расчета давления на поверхности затупленных по сфе-
ре конусов, показывает, что при их использовании не учитываются 
физические особенности течения газа, обусловленные разрывом кри-
визны образующей тела и выходом решения на асимптотику острого 
конуса.  

На основе представленной в данной статье формулы (4) были 
сделаны расчеты давления на поверхности затупленного по сфере 
конуса и проведено сравнение с данными численного решения невяз-
кой задачи в рамках уравнений Эйлера [15, 17]. Анализ результатов 
показал, что разработанная формула согласуется с физическим про-
цессом и численным решением. При этом относительная погреш-
ность не превышает 7 %. 

Применение формулы для распределения давления на поверхно-
сти сферы [8–10] и предложенная формула для конической части с 
использованием значений коэффициентов сопротивления сферы на 
основе работ [8–10] позволяет получить распределение давления на 
всем конусе с учетом разрыва кривизны контура образующей тела. 

В дальнейшем необходимо обобщить предложенный метод с це-
лью получения возможности его применения для умеренных сверх-
звуковых режимов обтекания конусов, а также учета угла атаки. 

Авторы выражают благодарность технику отдела аэродинамики, 
студенту третьего курса группы АК3-61 Аэрокосмического факуль-
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Modeling supersonic flow around blunted cones, 
taking into account the curvature discontinuity 

along the generatrix of the solid 
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The article presents an analytical expression for calculating pressure on the surface of 
blunted cones in a supersonic gas flow, taking into account the curvature discontinuity 
along the generatrix. We used a genetic algorithm and multi-stage functional optimisa-
tion methods for the least-squares method to determine free parameters of the expression. 
We compare the results obtained to the rigorous numerical solution to the inviscid prob-
lem. The comparison shows that it is possible to use the analytical expression for pres-
sure distribution over a surface in a wide Mach number range for various cone half-
angles. The expression proposed accounts for the curvature discontinuity along the gen-
eratrix at the point where the sphere is tangent to the conical surface, unlike the expres-
sions found in previously published works. 
 
Keywords: supersonic flow, curvature discontinuity along a generatrix of a solid, genetic 
algorithm 
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