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Рассмотрена одномерная схема расчета нагрузок на корпус летательного аппа-
рата от втекания воды в кольцевое пространство пускового контейнера при под-
водном газодинамическом выбросе. Внешняя гидродинамическая задача решается 
с использованием теории потенциала. Деформации стенок летательного аппара-
та и пускового контейнера учитываются на основе решения статической задачи 
Ламе. 
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Введение. Задачи исследования и математического моделирования 

нестационарных взаимодействий газовой и жидкой сред представляют 
интерес для разработки энергетических установок, технологических 
процессов, создания, эксплуатации и применения различных техниче-
ских систем. В этих приложениях наиболее широко распространены 
явления, связанные с динамикой парогазовых включений в жидкости 
[1–6], кавитацией [7, 8], струйными взаимодействиями [9, 10], испаре-
нием и конденсацией [11–13]. Оригинальным решением при экспери-
ментальном определении параметров ударного проникания тел в воду 
является моделирование сжимаемости воды с помощью специально 
приготовленной смеси несущей жидкости с пузырьками газа [14]. 
Стоит отметить, что необычные явления, похожие на перечисленные, 
встречаются и в живой природе [15, 16]. Дополнительным стимулом 
к физическому исследованию этих процессов и развитию средств их 
математического и компьютерного моделирования [17, 18] служит 
присущее этим явлениям фрактальное изящество [19, 20], обусловлен-
ное динамикой свободных границ жидкости. 

Тематика подводного старта летательных аппаратов (ЛА) содер-
жит множество задач экспериментального определения и расчета па-
раметров нестационарных газожидкостных течений и их воздействий 
на деформируемые конструкции ЛА и подводного носителя [21–23]. 
«Минометная» схема [24] подводного газодинамического выброса 
(рис. 1) имеет свои особенности [25]. Рассмотрим процесс, который мо-
жет реализоваться при разгерметизации кольцевого пространства (КП) 
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между корпусом ЛА и внутренней стенкой пускового контейнера 
(ПК). Если не предпринимать специальных мер, таких, например, как 
предварительный наддув КП до давления, примерно равного наруж-
ному гидростатическому давлению атм вHp p gH   [26, 27] (где 

атмp  — атмосферное давление; в  — плотность воды; g  — ускоре-

ние силы тяжести; H  — глубина погружения по верхнему срезу ПК), 

то под действием перепада давлений атмHp p  вода начнет быстро за-

полнять КП, сжимая находящийся там газ. Повышение давления в КП, 
которое при этом может реализоваться, способно привести к разруше-
нию корпуса ЛА. Иногда это явление называют «гидроударом», хотя 
оно и не вполне соответствует процессу, наблюдаемому при гидравли-
ческом ударе в трубах [28]. 

 

Рис. 1. Схема подводного газодинамического выброса 
летательного аппарата (ЛА): 

1 — поверхность воды; 2 — верхний срез контейнера; 3 — ЛА; 
4 — начальное положение ЛА; 5 — задонное пространство (ЗП) кон-
тейнера; 6 — энергоустройство, создающее избыточное давление 

ЗП ( );p t  7 — кормовое уплотнение ЛА; 8 — кольцевое пространство 

контейнера; 9 — начальное давление 0p  до разгерметизации; 

10  — переднее уплотнение контейнера после разрушения;   — угол  
наклона контейнера к горизонту 

 
Для проектных целей представляет интерес определение макси-

мального давления max ,p  реализующегося в КП при втекании воды 

под действием перепада давлений 0 ,Hp p  где 0p  — начальное дав-

ление газа в КП. Случай атм 0 Hp p p   соответствует частичному 
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предварительному наддуву КП. Для того чтобы гарантировать необ-
ходимый уровень давления, наддув осуществляют, подавая газ непо-
средственно в КП [26]. При этом учитывается также начальный сво-
бодный объем ЗП, куда газ из КП способен вполне свободно 
перетекать под кормовым уплотнением ЛА (см. рис. 1). Состав среды 
для задачи, рассматриваемой в данной статье, не имеет значения, хо-
тя на практике во избежание вторичного догорания в ЗП продуктов 
сгорания энергоустройства газодинамического выброса [24, 25, 29] 
предпочтительнее производить наддув газом, не содержащим кисло-
род (азотом) [26]. 

В данной работе процесс втекания воды в КП исследуется для 
наихудшего случая 0 атмp p  в рамках одномерной расчетной схемы 

[25, 30], построенной на балансовых соотношениях массы и импуль-
са для столба воды в КП. Основное внимание уделено рассмотрению 
внешней гидродинамической задаче и оценке влияния на величину 

maxp  упругости стенок ПК и корпуса ЛА. При этом движение ЛА 

в ПК считается не зависящим от дополнительного сопротивления, 
возникающего вследствие втекания воды в КП. На рис. 2 приведены 
графики пути L  (1), скорости V  (2), ускорения A  (4) ЛА и давления 

в ЗП ЗПp  (3) в функции времени t , использованные в данной работе 

при проведении расчетов. Учет связанности задачи не составляет 
труда. В практических приложениях к расчетной схеме стоит лишь 
добавить уравнения, описывающие движение ЛА и процессы в ЗП 
[23, 29, 31]. Угол   наклона ПК к горизонту (см. рис. 1) принят вер-
тикальным. 

 

Рис. 2. Заданные параметры движения летательного аппарата 
в пусковом контейнере: 

1 — путь ;L  2 — скорость ;V  3 — давление в задонном пространстве ЗП ;p  

4 — ускорение A  
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Предполагается, что в ненагруженном состоянии боковые поверх-
ности ПК и ЛА представляют собой цилиндры толщиной 

ПК ПК ПК
внешR R    и ЛА ЛА ЛА

внутR R    соответственно. Здесь ПК ,R  ЛА
внутR  — 

внутренние, а ПК
внеш ,R  ЛАR  — внешние радиусы ПК и ЛА. Учет прогибов 

стенок ПК и ЛА под действием избыточного давления среды учитыва-
ется в упрощенной постановке, мотивированной работой [28]. Однако 
в отличие от работы [28] вода как снаружи ПК, так и в КП предполага-
ется несжимаемой. Такой подход позволяет избежать решения задачи 
в частных производных, и его можно расценивать как один из началь-
ных этапов исследования и математического моделирования в рамках 
методологической стратегии, изложенной в работе [32]. Развитием это-
го подхода является описание деформаций стенок ПК и ЛА на основе 
динамической теории оболочек [33, 34]. Если учесть сжимаемость воды 
[28, 35], получим постановку задачи, естественную с точки зрения об-
щей теории механики сплошных сред [36]. 

Кормовое уплотнение ЛА (см. рис. 1) считаем непроницаемым 
для среды в обе стороны. Это означает, что горячие продукты сгора-
ния из ЗП не могут повлиять на термодинамическое состояние газо-
вого объема в КП, а газ из КП не может перетекать в ЗП под действи-
ем положительного перепада давлений, что вполне согласуется 
с начальной стадией анализа физических процессов в рамках страте- 

гии [32]. 
Заметим, что исследования и расче-

ты, представленные в данной работе, 
имеют научно-методический характер 
и не связаны с конкретными техниче-
скими приложениями. 

Внешняя гидродинамическая за-
дача. Для составления математического 
описания процесса втекания воды в КП 
воспользуемся идеализированной схе-
мой, приведенной на рис. 3. Считаем, что 
до начала этого процесса жидкость зани-
мает верхнее полупространство над 
плоскостью ПК ,x L  отождествляемой 
с наружной поверхностью корпуса под-
водного носителя ЛА. На бесконечности 
жидкость покоится и имеет давление, 
равное давлению Hp  на уровне верхнего 

среза пускового контейнера (ВСПК) в 
исходной физической постановке задачи 

 

Рис. 3. Идеализация втекания 
воды в кольцевом пространстве 
постоянного поперечного 

сечения 
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(см. рис. 1). Весомость жидкости учитывается только для столба во-
ды, проникшего в КП. 

Под действием начального перепада давлений 0Hp p  формиру-

ется течение воды, направленное внутрь ПК. Скорость втекания воды 
в КП втекv  и давление втек ,p  которое она приобретает на уровне 

ВСПК, требуется определить в ходе решения задачи. Наряду с вели-
чиной втекv  будем использовать объемный расход воды внутрь КП 

КП
втек втек( ) ,Q t v   где КП

втек  — площадь сечения КП на уровне ВСПК. 

Заметим, что эти величины отрицательны при фактическом втекании 
воды внутрь КП. 

Данную задачу и родственные ей [25, 37] обычно рассматривают с 
использованием двух модельных гидродинамических течений. Одно 
из них — течение от точечного источника/стока [38], непосредственно 
определяемое фундаментальным решением уравнения Лапласа в 3  
[39]. В видоизмененной форме оно описывается уравнением Релея и 
характеризует динамические колебания сферического газового пу-
зырька, находящегося в жидкости [2, 40]. Другое течение определяется 
решением Ламба задачи о вытекании жидкости из полупространства 
через круговое отверстие [41]. 

Решение Ламба в большей степени соответствует рассматривае-
мой задаче. Имея в виду определенную работу с ним, дадим его вы-
вод, следуя решению задачи о потенциале электростатического поля, 
созданного диском [42], имеющей тождественную математическую 
формулировку. Двойственной по отношению к рассматриваемой за-
даче является задача об осесимметричном безотрывном обтекании 
диска [41] или, что эквивалентно, линеаризованная задача о плоском 
ударе диска по поверхности идеальной несжимаемой жидкости [35]. 
Замкнутую форму решения этих задач обычно приводят только для 
границы области определения, ограничиваясь для внутренних точек 
интегральным представлением, которое неудобно для вычислений 
[41, 42]. Однако благодаря формулам [43] все решение можно пред-
ставить в простой замкнутой форме [30, 44]. 

В постановке, близкой к рис. 3, пока игнорируя присутствие ЛА, 

будем искать решение уравнения Лапласа 
2 2

2 2

1
0

r r r z

    
  

  
 в по-

лупространстве ПК 0,z x L    подчиняющееся условиям ПК ( ),
r R

C t


   

ПК

0
r Rz 





 при 0z   и 0

z
   на бесконечности (где r  — рассто-

яние от оси ПК). Применяя преобразование ( , )  z  
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0

0

( , ) ( )


   r z J r r dr  Ханкеля нулевого порядка [42], для изображе-

ния ( , )  z  получаем уравнение 2 2 2 0,d dz    решением кото-
рого с заданным поведением на бесконечности является функция 

( , ) ( ) .    zz A e  Применяя к ней обратное преобразование, имеем: 

0

0

( , ) ( ) ( ) .


      zr z A e J r d                              (1) 

Подстановка выражения (1) в граничные условия приводит к си-
стеме дуальных интегральных уравнений 

ПК
0

0

2 ПК
0

0

( ) ( ) ( ) ,

,

( ) ( ) 0,






     



     





A J r d С t r R

A J r d r R

 

откуда 
 ПК

2

sin2 ( )
( )

RC t
A


 

 
 [45]. Ее подстановка в выражение (1) 

и формулы [43] дают: 

 
ПК

1 ПК
0

0

2 ( ) 2 ( )
( , ) sin ( ) arcsin ;zC t C t R
r z e R J r d

A


      

        (2) 

     

2 2 2
ПК

0

0

2 ( ) 2 ( )
( , ) sin ( ) ,z A r zC t C t
r z e R J r d

z A A




 

 
   

     (3) 

где     0,5 ,A A A       22 ПК .A z r R     

Для получения предельных значений  выражений (2), (3) при 

0z   предварительно найдем предельные значения   ПК ,A r R    

  ПК .A r R    Теперь, если ПК ,r R  получаем:  

  ПК ,A R r    ПК ,A R  
2 ( )

arcsin1 ( ),
C t

C t 


 0,
r





 

 
    

2ПК 2

ПК ПК 2ПК 2

2 ( ) 2 ( )
.

R rC t C t

z R r R r R r


 

     
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Если ПК ,r R  имеем:  

  ПК ,A r R    ,A r  
ПК2 ( )

arcsin ,
C t R

r



 

 

ПК

22 ПК

2 ( )
,

R C t

r r r R




  
 0.

z





 

Интегрирование 
z




 по площади входного сечения дает объем-

ный расход 

 
ПК

1 22ПК 2 ПК

0

( ) 4 ( ) 4 ( ) ,
R

Q t C t r R r dr C t R


       

т. е. 
ПК

( )
( ) .

4

Q t
C t

R
  В итоге параметры внешнего течения в точках 

входного сечения ПК выражаются формулами 

ПК

( )
,

4
ext Q t

R
   0,ext

rv   

 2ПК ПК 2

( )
.

2

ext
z

Q t
v

R R r


 
                  (4) 

Полученное математическое решение задачи Ламба справедливо 
при любом знаке ( ),Q t  но физический смысл оно имеет лишь в слу-
чае истечения жидкости из полупространства. При втекании жидко-
сти в полупространство реальная картина течения становится совер-
шенно иной [46]. Вместо расталкивания жидкости во все стороны, 
что имеет место при течении от точечного источника, втекающая 
в полупространство струя в результате вязкого взаимодействия отда-
ет свой импульс окружающей жидкости. Модельная задача для тако-
го течения должна ставиться в соответствии с теорией затопленных 
струй [9]. Применительно к рассматриваемым в данной статье зада-
чам достаточно считать, что при вытеснении жидкости из ПК 

втек ( ) 0
( ) .HQ t

p t p

                                        (5) 

В решении (2)–(4) компоненты скорости у краев отверстия не 

ограничены  ПК ПК0 0
, ,ext ext

r z
r R r R

v v
   
     а квадрат скорости  2extv   

 2ext
zv  является неинтегрируемым по площади входного сечения. 

Решение модельной задачи можно усовершенствовать, если распре-
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деление скорости 
ext

ext
zv

z





 на границе 0z   считать ограниченным, 

в частности непрерывным. При этом удобно использовать условие 
нормировки 

ПК

ПК 0

( ,0) 2 ( ,0) 1.



  

 
R ext

ext
z

r R

v r dS r rdr
z

 

Решение  ( , )ext r z  («единичный потенциал») соответствующей 
задачи Неймана для уравнения Лапласа в полупространстве 0z   
имеет вид [39]: 

   1

0

1
( , )

2
 ,ext ext

MP z

z

r z r v P dS P



 
   

где MPr  — расстояние между точкой «интегрирования» 

  ( cos , sin ,0)P r r   и точкой «наблюдения» ( ,0, )M r z  (указаны де-
картовы координаты точек,   — полярный угол цилиндрической си-

стемы координат). Учитывая характер распределения  ext
zv  и форму-

лы для вычисления потенциала простого слоя [37, 47], для точек 
плоскости 0z   имеем: 

ПК

2

0

2
( ,0) ( ) ( ,0) ,  

 
  


R
ext ext

z

r
r k v r dr

r r
 

где 2( )k  — полный эллиптический интеграл первого рода в форме 

Лежандра, 2
2

4
.

( )

rr
k

r r






 Результаты вычислений для ряда распреде-

лений 
ПК

( ,0) ,ext
z r R

v r


 включая формулы (4), приведены на рис. 4. 

Кривая 4 соответствует задаче втекания воды в ПК через кольце-
вой зазор между корпусом ЛА и стенкой ПК. Расчеты проводились 
для значений ПК 0,5,R   КП ПК ЛА 0,02.R R     Потенциал 

( , , ) ( ) ( , ),ext extr z t Q t r z                                 (6) 

соответствующий этому расчету, будем использовать в дальнейшем. 
Присутствие корпуса ЛА учитывалось схематично условием 

ЛА
( ,0) 0.ext

z r R
v r


  Для уточнения требуется серия расчетов, учитыва-

ющих выдвижение ЛА из ПК и изменение текущей скорости ЛА [37, 
47, 48]. 
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Рис. 4. Поведение единичных потенциалов  ext  при 0:z  
 — вычисления решения Ламба по аналитической формуле 

 
Для внешнего течения выполняется интеграл Коши — Лагранжа 

2

в в( , )

( )
.

2

ext ext ext
H

r z

pv p

t

 
      

                             (7) 

Для входного сечения КП из формул (6), (7) получаем: 

КП
втек

22

в в

( ) 0,5 ( ) grad .
ext

ext ext Hpp
Q t Q t



 
       

  

В результате осреднения по сечению имеем: 

 

ПК

ЛА

2
в в

вх вх вх 2КП ПК КП
втек втек

2
( ) ( ,0) ;

2

 
   
 


R

ext ext
H

R

Q Q
p t p r r dr p

R
           (8) 

тр

ЛА

вх
ПК КП

втек

2
( ,0) ,

R
ext

R

r r dr
R

 
 
   

тр

ЛА

2
вх

2 КПКП
втеквтек

2
grad ( ,0) .

 
 



R

ext

R

r r dr     (9) 

Из формулы (6) следует, что размерность ext  обратна длине, по-
этому коэффициенты вх ,  вх  безразмерны. Результаты вычислений 

этих коэффициентов по формулам (9) приведены на рис. 4. 
Характер течения во входном сечении ПК, показанный на рис. 3, 

практически невозможно реализовать в маловязкой жидкости. В пре-
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деле идеальной жидкости всякое безотрывное течение, обтекающее 
выпуклый угол, должно иметь в вершине угла бесконечную скорость 
[38, 42]. Решение Ламба соответствует этому случаю: при аналитиче-
ском продолжении потенциала (2) в полупространство 0z  получит-
ся безотрывное обтекание жидкостью выпуклого угла величиной 2 .  

Согласно терминологии гидравлики процесс втекания жидкости в 
ПК можно охарактеризовать как течение с внезапным сужением по-
тока [49, 50]. Выделяют два основных режима таких течений: «безот-
рывный» (рис. 5, а) и с полным отрывом потока от стенок (рис. 5, б). 
В дальнейшем исследовании ограничимся рассмотрением первого 
режима с локальной зоной отрыва потока от стенок ПК. 

 

Рис. 5. Схемы «безотрывного» (а) и с полным отрывом потока  от  
стенок   (б)   режимов   течения   реальной   жидкости  с  внезапным  

сужением потока 
 
Нестационарное течение (6) в момент времени t   совпадает со 

стационарным течением, имеющим потенциал ( ) ( , ) ( )   ext r z Q  

( ) ,ext r z  и удовлетворяющим интегралу Бернулли 

2
стац

в в( , )

( )
.

2

extext
H

r z

p pv 
    

                                (10) 

Сравнивая формулы (7) и (10), получаем: 

нест

в ( , )

0,
extext

r z

p

t

 
    

                                   (11) 

где нест стац .
ext ext extp p p   

Для стационарного течения на длине входного участка имеет ме-
сто потеря давления 
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 
2

в
вх. стац вх. стац вх 2КП

втек

  .
2

ext int Q
p p


 


 

Здесь вх. ст ац
intp  — давление в месте присоединения струи к стенкам 

трубы при стационарном течении (см. рис. 5, а); коэффициент сопро-
тивления входа вх 0,5   [49]. 

Нестационарная составляющая давления, будучи связанной с по-
тенциалом формулой (11), имеет более высокую степень гладкос- 
ти. Ограничившись предположением вх. нест вх. нест  

int extp p  и полагая, что 

втек вх вх. ст  ац вх. нест ,
int int intp p p p    из формулы (8) имеем: 

 
2

в в
втек вх вх 2ПК КП

втек

( ) ,
2

H

Q Q
p t p

R

 
  



   вх вх вх .               (12) 

Одномерная схема расчета втекания воды в кольцевое про-
странство с недеформируемыми стенками. Пусть в момент 0t t  

происходит разгерметизация КП между корпусом ЛА и стенкой ПК, 
и вода начинает поступать внутрь КП под действием перепада давле-
ний. Игнорируя структуру отрывной зоны вблизи входного сечения 
ПК, из закона сохранения массы несжимаемой жидкости получаем 
следующие соотношения (см. рис. 3): 

КПв
в втек втек( ) ,

dm
v t

dt
   в втек гв КП

( )
( , ) ( ) ( ) .

Q t
v x t v t v t  


             (13) 

Здесь  ПК КП
в в гв( )m t L x    — текущая масса воды внутри КП; 

в ( , )v x t  — скорость частиц воды в сечении с координатой 
ПК

гв ( )x t x L   в момент времени ;t  КП КП
втек   — площадь попереч-

ного сечения КП. 
Производная по времени от импульса в в гв( ) ( ) ( )K t m t v t   

 ПК КП
в гв гв ,v L x     находящегося в КП столба воды равна сумме 

действующих сил и скорости переноса импульса через входное се- 
чение 

 КП ПК 2в
в гв гв гв

dK
L x a v

dt
        

 КП 2 КП
г втек в гв в сопр( ) ( ) ,p t p t v m g F                      (14) 

где гв гв гвa v x    — ускорение границы воды. 
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Давление газа в объеме  КП
г гв 0( ) ( )t x L t x     определяем как 

г0
г 0

г

( ) ,
( )

n

p t p
t

 
   

                                     (15) 

где г0 г 0( )t   — начальный объем газа; n  — показатель политропы. 

Величина ПК ЛА
сопр сопр сопрF F F   складывается из сил вязкого трения, 

действующих на столб воды со стороны стенок ПК и ЛА. Оценим эти 
силы, используя формулы гидравлики для стационарных течений 
в трубах [49] и учитывая, что сопротивление вязкого трения опреде-
ляется величиной и направлением скорости w  жидкости относитель-
но стенки. В результате получаем соотношение [30, 49] 

     
ПК

2гвсопр ПК ПК 2 ЛА ЛА
тр гв гв тр гв гв

в

sgn sgn .
4

L xF
R v v R v V v V

 
      

(16) 

Коэффициенты сопротивления трения ПК, А
тр

 Л  вычисляем из урав-

нения 

  2

1 1 1

1
.

lg Re lga b c


     

 

Числовые значения коэффициентов 1,a  1,b  1c  [49] зависят от диа-

пазона значений, принимаемых выражением Re ,   где 
гидрD


  — 

относительная шероховатость стенки;   — средняя высота выступов 

шероховатости, м; в гидр

в

Re
w D




 — число Рейнольдса; в  — динами-

ческая вязкость воды; 
   

КП
ПК ЛА КП

гидр ПК ЛА

4
2 2

2
D R R

R R


    

 
 — 

гидравлический диаметр КП. 
Из формулы (14) получаем выражение 

   2 ПК КП
г в вх гв гв сопр в

гв ПК КП ПК
гв вх

( ) 0,5
,

Hp p v L x g F
a

L x R

        


  


          (17) 

являющееся основой для составления системы обыкновенных диффе-
ренциальных уравнений (ОДУ) гв гв ,x v  гв гв ,v a  легко интегрируемой 

методом Рунге — Кутты. Результаты вычислений давления г ( )p t  для 
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начальных данных ПК
гв 0( ) ,x t L  гв 0( ) 0v t   и двух предельных процес-

сов сжатия газа, изотермического ( 1)n  и адиабатического ( 1, 4),n  
приведены на рис. 6. 

 

Рис. 6. Давление в кольцевом пространстве при втекании воды  

г
p  (1, 2), 

втек
p  (4) без учета деформаций стенок ПК и ЛА  и 

г
p  (3), 

втек
p  (5) с  учетом деформаций; изотермический ( , , , )  

и адиабатический ( ) процессы сжатия газа 
 
Результаты расчетов для случаев 1n  и 1, 4n  сильно различа-

ются. Реальный процесс предположительно протекает ближе к изо-
термическим условиям, поскольку сжатие газа в КП происходит 
в контакте с холодными стенками ПК и ЛА и границей воды. С одной 
стороны, ввиду отрыва и завихрения втекающей жидкости у ВСПК 
граница может быть нерегулярной и возможно проникновение в га-
зовый объем струек и капель жидкости, что вызовет интенсифика-
цию теплообмена. С другой стороны, стадия интенсивного сжатия га-
зового объема кратковременна, поэтому требуется более детальное 
рассмотрение энергетического баланса для газового объема в КП. 
Причем при решении практических задач целесообразно учитывать и 
податливость стенок КП, поскольку, как видно из рис. 6 (кривая 3), 
учет деформаций стенок КП существенно влияет на динамику про-
цесса сжатия газового объема. 

Учет податливости стенок кольцевого пространства. Если 
учесть деформации стенок, площадь поперечного сечения КП будет 
определяться выражением 

   2 2КП ПК ПК ЛА ЛА ,r rR u R u                       (18) 
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где ПК ,ru  ЛА
ru  — радиальные перемещения частиц материала внут-

ренней стенки ПК и внешней стенки ЛА. При этом рассмотрение ба-
ланса массы приводит к соотношению в частных производных 

 
КП

КП
в 0.v

t x

 
  

 
                                 (19) 

В рамках упрощенного подхода, мотивированного работой [28], 
будем учитывать податливость стенок КП, подобно методу плоских 
сечений [48], исходя из решения классической задачи Ламе об опре-
делении напряжений и перемещений в упругой трубе, нагруженной 
внутренним и внешним давлением [34, 51]. 

Предполагая состояние плоской деформации в сечениях трубы, 
будем иметь в цилиндрических координатах трехосное напряженное 
состояние, характеризуемое (в изотропном материале) двумя упру-
гими константами. В рассматриваемой задаче (см. рис. 3) атмосфер-
ное давление не вызывает деформацию, поэтому положим 

атм .p p p   Тогда внешнее/внутреннее давление на стенке ПК равно 

2 0p  / 1 КП ,p p   а на стенке ЛА — 2 КПp p  / 1 0,p   где КПp  — мест-

ное избыточное давление газа или воды в КП. Считая, что толщины 
стенок малы по сравнению с их радиусами, в соответствии с решени-
ем задачи Ламе имеем: 

   
     2 2 2ПК ПК ПКПК

внеш КППК КП
ПК ПК ПК ПК2 2ПК ПК

внеш
42

r

R R p Rp R
u

R R

 
    
         


 

 
   2 2ПК ПКПК ПК

КП

ПК ПКПК ПК ПК

12
,

4

p R

E

   
 

  


                   (20) 

   
     2 2 2ЛА ЛА ЛАЛА

внут КПЛА КП
ЛА ЛА ЛА ЛА2 2ЛА ЛА

внут
42

r

R R p Rp R
u

R R

 
    
         


 

 
   2 2ЛА ЛАЛА ЛА

КП

ЛА ЛАЛА ЛА ЛА

12
,

4

p R

E

   
 

  


 

где  ,   — упругие константы Ламе; E  — модуль Юнга;   — ко-
эффициент Пуассона.  

Руководствуясь приведенными формулами, положим: 

ПК ПК
КП ,ru k p  ЛА ЛА

КП ,ru k p  КП
КП

атм

,
p

p
p



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   2 2ПК ПК
атмПК

ПК ПК

1
,

4

p R
k

E

 



 

   2 2ЛА ЛА
атмЛА

ЛА ЛА

1
.

4

p R
k

E

 



        (21) 

Для многих материалов 0, 25 0,30,   что дает 2 1,   тогда соот-
ношения (20) соответствуют формуле в работе [28]. Однако в широком 
диапазоне значений   такое предположение может оказаться неточным 
[34, 52], поэтому будем придерживаться соотношений (20), (21). 

Из уравнения баланса импульса для КП между жесткими стенка-
ми постоянного радиуса (см. рис. 3) следует, что вp x   не зависит 

от x , т. е. в каждый момент времени давление вдоль столба воды из-
меняется линейно. При учете упругости стенок КП сохраним эту за-
висимость в качестве аппроксимации. Тогда, согласно формулам 
(21), радиальные координаты стенок ПК и ЛА также будут изменять-
ся по линейному закону, т. е. в каждый момент времени столб воды 
будет занимать кольцевой объем между усеченными конусами вели-
чиной 

 2 2 2 2в
в 2 2 2 2 1 1 1 1 в 0 ,

3

h
a a b b a a b b h


                          (22) 

где 
ПК

в гв гв ,h L x z    

ЛА ЛА ЛА ЛА
1,2 ПК ,ПК гв ПК ПК г( , ) ,ra R u x t R k p   

 
                     (23) 

 ЛА ЛА ПК ЛА ЛА
1,2 ПК ,ПК ПК ПК втек, .rb R u L t R k p     

Из формул (18), (20), (21) получаем: 

   2 2КП ПК ПК ЛА ЛА
КП КП( , ) ,x t R k p R k p      

 КП КП 2 2
г гв 2 1( , ) ,x t a a        КП КП ПК 2 2

втек 2 1, .L t b b            (24) 

Уравнение баланса массы (13) для столба воды перепишем как 

КПв
втек втек .

d
v

dt


                                  (25) 

Затем, дифференцируя выражения (22), (23), приходим к соотно-
шению 

КП
0 гв втек втек в г г , в втек втек ,  0,t tv v h a p h a p                     (26) 

где 

   ПК ЛА
г 2 2 1 12 2 ,

3
a k a b k a b

        г , г ; tp p  
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   ПК ЛА
втек 2 2 1 12 2 ,

3
a k a b k a b

        втек , втек ; tp p  

г г , втек втек , 0 0, .  
t t ta p a p  

Объемный расход воды внутрь КП определяется выражением 
КП

втек втек( ) ( ).Q v t t   Учитывая формулы (23), соотношение (12) запи-

шем в виде: 

 КП 2втек2
втек втек вх втек

вх в

0,5 .Hp pbd
v v

dt

 
      

                    (27) 

Из соотношения (15) при 1n  получаем: 

 г , г г , г г г2 1 0.t tp p p                                     (28) 

Объем газа в КП вычисляем по модифицированной формуле 

 КП КП
г г гв 0 г г( ) ( ) .t x L t x h      

Согласно формулам (24), имеем: 
КП
г 12 г , ,ta p   КП 2

г 3 г , 12 г , ,t ta p a p     

 ПК ЛА
12 2 12 ,a k a k a       2 2ПК ЛА

3 2 .a k k     
 

Тогда соотношение (28) принимает вид 

     КП
г г гв г 12 г г г , г , г , 4 г1 1 2 1 ,t t tp v a h p p p a p                   (29) 

где КП
г , 12 г г , г г , ;t t ta h p h    

г , гв ( );th v V t   2 КП
4 3 г г , 12 г , г , г2 ( ).t t ta a h p a h p A t    

Наконец, аналогичное формуле (14) уравнение баланса импульса 
позволяет записать: 

КП КП 2 КП КПв
г г втек втек в втек втек в в сопрsin ,

dK
p p v g F

dt
        

   
ПК ПК

ПК

гв
гв гв

КП КП КП
в в в в в в .

L L
L

x
x x

K v dx xv x v dx
x

 
      

  
            (30) 

Используя соотношение (19), получаем: 

ПК ПК

гв гв

КП
1 ПК КП КП ПК КП КП
в в втек втек гв гв г втек втек .

L L

x x

d
K L v x v x dx L v x dx

t dt
 

         
   
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Поскольку 

ПК

гв

КП
в ,

L

x

dx    то  
ПК ПК

гв гв

КП КП
гв гв в .

L L

x x

x dx x x dx x        Ин-

теграл 

ПК

гв

КП
гв( )

L

x

x x dx   — это статический момент инерции усечен-

ного конического кольца, рассмотренного при выводе формулы (22), 
относительно плоскости, перпендикулярной оси Ox  и проходящей 
через точку гв  ( , 0,0).x  В результате соответствующих вычислений 

имеем: 

ПК

гв

2
2КП 2 2 2в

гв в 11
( ) ( ) 2 .

12

L
j

j j j j
x

h
x x dx a b b h





           

Следовательно 

1 КП 2
в в в втек втек гв в в 1( ),

d
K h v v h

dt
        

 
2

1 КП КП 2в в
в гв втек втек в втек втек в гв гв в 12

( )
dK dd d

v v h v v v h
dt dt dt dt

 
           

2
КП 2 2втек2 в

в гв гв втек втек вх втек в 12
вх в

2 0,5 ( ).Hp pb h d
v v v v h

dt

 
          

  

Вычислим последнее слагаемое: 

2 2
1 в гв 1 в 1,( ) 2 ,в t

d
h h v h

dt
      1 1, г г , втек втек, ,     t t ta p a p  

ПК ЛА
г 2 2 1 1( ) ( ) ,

6
a k a b k a b

       ПК ЛА
втек 2 2 1 1( 3 ) ( 3 ) ,

6
a k a b k a b

        

г г , втек,( ),  t ta k p p  втек г , втек,( 3 ),  t ta k p p  1
312 ,k a  

1 г г , втек втек, г г , втек втек, г г , втек втек, 2 ,                 t t t t t ta p a p a p a p a p a p  

     2 2
2 г , втек, г , г , втек, втек, г , втек, втек,3 2 ,             
 

t t t t t t t t tk p p p p p p k p p p  

2
2 2 2
в 1 гв 1 в 1 гв в гв 1, в г г , втек втек, 22

( ) 2 2 4 ( ).            t t t

d
h v h v h v h a p a p

dt
 

В результате подстановки в формулу (30) получим: 

  2 2
в в 1 гв г в г , втек в втек,2        t th v a h p a h p  
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КПКП КП
сопр 2г г втек втек втек2 в

в вх втек
в в вх в

sin 0,5H
Fp p p pb h

g v
   

           
  

2 2
гв втек гв 1 в гв 1, в 2(2 ) 2 4 .tQ v v v h v h                                (31) 

Для вычисления силы сопротивления оставляем прежнюю фор-
мулу (16). 

Полученные соотношения должны быть разрешимы относитель-
но старших производных гв ,v  г , ,tp  втек, , tp  что требуется на каждом 

шаге интегрирования системы ОДУ. Дифференцируя соотношение 
(26) еще раз, имеем: 

2 2
0 гв в г г , в втек втек, в г , г , втек, втек,4 ( )        t t t t t tv h a p h a p kh p p p p  

 1 2
гв 0, 2 вх в втек вх втек2 ( ) 0,5 ,t Hv b p p v                           (32) 

поскольку 

г г , втек втек, г , втек, г , г , втек, втек,2 (2 ) ( 2 )       
 t t t t t t t ta p a p k p p p p p p  

2 2
г , г , втек, втек,4 ( ).  

t t t tk p p p p  

В момент вскрытия КП 0( 0)t   вода неподвижна, но ускорение ча-

стиц и давление в ней неоднородны из-за условия несжимаемости. Из 

выражений (12), (17) имеем: 
ПК

0
гв 0 КП

вх в

( ) ,Hp p R
a t




  
 втек 0 0 атм( )p t p p   — 

т. е. стенки ПК и ЛА деформируются непрерывно. Матрица СЛАУ, 
составленная для старших производных, при 0t t  вырождена, по-

скольку в 0( ) 0.h t   По этой причине первые несколько расчетных ша-

гов выполнялись по уравнению (17), затем вычисления велись по 
уравнениям (27), (29), (31), (32), а при 0Q  вместо соотношения (27) 
использовалось условие (5). Начальные условия для ОДУ были при-
ведены ранее. При дальнейшем расчете с использованием других 
формул новые начальные условия согласовывались с результатами 
предыдущих вычислений. Необходимо, однако, обратить внимание 
на соблюдение соотношений (15) и (25), из-за дополнительного диф-
ференцирования уже не являющихся автоматическим следствием 
решаемых ОДУ. Интегрирование систем ОДУ проводилось численно 
методом Рунге — Кутты, результаты расчета параметров г ( )p t  и 

втек ( )p t  приведены на рис. 6. Данные графиков служат подтвержде-

нием того, что учет упругости стенок КП значительно снижает про-
гнозируемый максимум давления от втекания воды в КП. 
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Заключение. Представлена одномерная нестационарная расчет-
ная схема математического моделирования процесса втекания воды в 
кольцевое пространство пускового контейнера при подводном газо-
динамическом выбросе ЛА. Получены расчетные оценки максималь-
ного давления max ,p  действующего на корпус ЛА в этом процессе. 

Подтверждена важность более детального исследования термодина-
мического процесса сжатия газового объема втекающей водой в от-
сутствие предварительного наддува КП. Показано, что учет подат- 
ливости стенок ПК приводит к существенному снижению прогнози-
руемых значений max .p  При этом увеличивается время сжатия газо-

вого объема, что влияет на теплообмен газа с окружающими его гра-
ницами. По этой причине оба процесса следует рассматривать 
совместно. 
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Mathematical simulation of the process of water entering 
the annular space of a canister 

during submarine gas-driven aircraft ejection 

© A.V. Plyusnin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The study deals with a one-dimensional analytical model for computing the loads on the 
body of an aircraft caused by water entering the annular space of a launch canister. We 
used potential theory to solve the "external" hydrodynamic problem. Solving Lamé equa-
tions for the static case accounts for the strain in the walls of the aircraft and the launch 
canister. 
 
Keywords: aircraft, submarine ejection, annular space, water influx 
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