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УДК 532.51 
 

Многомасштабное моделирование процессов 
фильтрации жидкого связующего в композитных 
конструкциях, изготавливаемых методом RTM 

© Ю.И. Димитриенко, И.О. Богданов 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
 
Предложена математическая модель многомасштабного процесса фильтрации 
слабосжимаемых жидкостей и газов в периодических пористых средах примени-
тельно к процессу производства композиционных материалов на основе метода 
RTM. Применение метода асимптотического осреднения позволило сформули- 
ровать так называемые локальные задачи фильтрации для отдельной поры и гло-
бальную задачу неустановившейся фильтрации слабосжимаемых жидкостей. Рас-
смотрены две модели слабосжимаемой жидкости: классическая, основанная на 
уравнении состояния Маскета, требующем задания начальных постоянных давле-
ния и плотности жидкости, и обобщенная модель, основанная на том же уравне-
нии, но требующая задания только начальной плотности жидкости, использующая 
вместо начального постоянного давления неизвестное гидростатическое давление 
в жидкости. Представлены результаты моделирования процесса пропитки образца 
материала наполнителя связующим с использованием двух указанных моделей сла-
босжимаемой жидкости. 
 
Ключевые слова: многомасштабное моделирование, фильтрация, метод RTM, 
композиционные материалы, метод конечных элементов, метод асимптотическо-
го осреднения 

 
Введение. Среди большого числа технологий изготовления ком-

позитов в последнее время все большее распространение получает 
метод пропитки армирующего наполнителя связующим в оснастке 
[1–5]. Существует множество методов, основанных на данном под-
ходе, но большая их часть являются вариациями метода RTM (Resin 
Transfer Moulding — метод инжекции смолы в закрытую форму), 
в рамках которого используется жесткая оснастка, состоящая из мат-
рицы и пуансона. Сначала на матрицу выкладывается сухой раскро-
енный материал, например стеклоткань, стекломат или иной вид ар-
мирующего материала, который прижимается пуансоном к матрице. 
Затем под необходимым давлением в оснастку подается жидкое свя-
зующее. Инжекция продолжается до полной пропитки наполнителя, 
после чего композит отверждается при нормальной или повышенной 
температуре. 

Качество изделия, полученного в результате применения метода 
RTM, зависит от многих факторов: параметров оснастки, характери-
стик наполнителя, свойств связующего, рабочего давления пропитки, 
размеров изделия и др. В связи с этим большое значение имеет про-
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блема моделирования движения жидкого связующего и газовой фазы 
через армирующий наполнитель на этапе изготовления композита.  

Глобальные задачи движения жидкости в пористой среде, в основе 
которых лежит классический закон Дарси, описывающий медленные 
течения жидкостей и газов, достаточно хорошо изучены в отечествен-
ной и зарубежной литературе [6–10]. Тем не менее, классические под-
ходы чаще всего базируются либо на экспериментальном определении 
коэффициентов проницаемости пористой среды, входящих в закон 
Дарси, либо на использовании различных эмпирических соотношений 
для описания локальных процессов переноса. В этом случае получа-
ются довольно грубые оценки реальных процессов, происходящих 
внутри пор со сложной геометрией, что приводит к большим отклоне-
ниям при определении проницаемости. В связи с этим важной частью 
исследования фильтрации является анализ локальных процессов пере-
носа для отдельно взятой поры.  

Наиболее эффективным методом математического моделирования 
процесса фильтрации в пористой системе является метод асимптоти-
ческого осреднения [11–16]. Методу решения задач нестационарной 
фильтрации в многофазных композитных структурах посвящены ра-
боты [17–20]. Цель настоящей работы — развитие метода асимптоти-
ческого осреднения для случая многомасштабного моделирования 
процесса фильтрации с учетом движения фаз как в отдельных порах, 
так и в пористой среде в целом, для слабосжимаемых жидкостей при-
менительно к задаче течения жидкого связующего в порах сухой ком-
позитной конструкции.  

Геометрическая модель движения жидкого связующего в по-
ристом каркасе композитного материала. Для простоты будем 
считать, что композиционный материал имеет форму параллелепипе-
да и состоит из трех фаз: армирующего наполнителя, газовой фазы, 
заполняющей поры наполнителя в отсутствии жидкого связующего, 
и самого жидкого связующего, движущегося по порам наполнителя, 
вытесняя при этом газовую фазу. Предполагается, что существует 
подвижная граница раздела gl  (рис. 1) между областями lV  и ,gV  

причем в области lV  есть только наполнитель и жидкая фаза, а в об-

ласти gV  — только наполнитель и газовая фаза. Граница раздела gl  

представляет собой плоскость, параллельную координатной плоско-
сти 1 2Ox x  (см. рис. 1) во время ее движения. 

Предполагается, что жидкость и газ являются изотропными ли-
нейно-вязкими средами, жидкость слабосжимаема, газ сжимаемый 
и совершенный, движение жидкости и газа изотермическое, массо-
вые силы отсутствуют. 
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Рис. 1. Модель процесса пропитки ар-
мирующего   наполнителя  жидким  свя- 

зующим: 
1 — ячейки периодичности, заполненные га-
зовой фазой (материалом наполнителя); 2 — 
поверхность раздела фаз; 3 — ячейки перио-

дичности, заполненные связующим; l  — 

поверхность, на которой задано давление 

elp  жидкого связующего; g  — поверх-

ность, на которой задано давление egp  газа; 

,l
   g

  — боковые герметичные поверхно- 

сти областей lV  и gV  соответственно 
 

 
Системы уравнений Навье — Стокса и Стокса для моделиро-

вания движения жидкости и газа в порах композита. Под дей-
ствием давления, создаваемого в пористой среде при методе RTM, 
происходит движение жидкой фазы по порам, при котором вытесня-
ется газовая фаза. Общая постановка задачи движения слабосжимае-
мой жидкости и газа основана на системе уравнений Навье — Стокса, 
которая в безразмерной форме имеет вид [21] 

 
 0 0

( ) 0,

1
( ) ( ) ( ) ,

Eu

,

1,3,    1,3,   , .

mt i m mi

m mi t j m mi mj i m m m i j mj m j j mi
m

m m m ml l l

v

v v v p v v

p A p K

i j m l g

   

              

     

  

 (1) 

Здесь m  — плотность жидкости (газа); i  — ковариантная произ-

водная; miv  — компоненты вектора скорости; ,m  m  — коэффици-

енты вязкости жидкости (газа); mp  — давление в жидкости (газе); 

m mg mlA R K     — константа упругости газа и жидкости; ˆ
gK R   — 

коэффициент упругости газа; R  — безразмерная газовая постоянная; 

  — температура; mg  и ml  — символы Кронекера; ˆ ˆ ˆ/l lK K p   — 

безразмерная константа упругости жидкости; K̂  — коэффициент 
упругости жидкости; 0lp  — гидростатическая часть давления в жид-

кости, отвечающая за изменение давления без изменения плотности 
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жидкости, в общем случае является неизвестной переменной величи-
ной; 0l  — плотность жидкости в начальный момент времен; Eum  — 

число Эйлера, вычисляемое по формуле 
2

ˆ
Eu ;

ˆ ˆ
m

m
m m

p

v



 величины 

с символом   являются характерными значениями соответствующих 
функций. 

Индекс m g  соответствует газовой фазе, а m l  — слабосжи-
маемой жидкости. Уравнение состояния в системе (1) при m g  
представляет собой уравнение состояния Менделеева — Клапейрона 
в безразмерной форме для газа, а при m l  — уравнение состояния 
Маскета [6, 7] для слабосжимаемой жидкости. Модель, для которой 

0 const,lp   назовем классической моделью слабосжимаемой жидко-

сти (КСЖ), а модель, в которой 0lp  является переменой величи- 

ной, — обобщенной. Для обобщенной модели слабосжимаемой жид-
кости (ОСЖ) систему уравнений (1) необходимо дополнить, по-
скольку 0lp  является самостоятельной неизвестной величиной.  

Уравнение состояния в системе (1) позволяет рассматривать 
в единой форме все три модели: модель совершенного сжимаемого 
газа, КСЖ и ОСЖ. 

Система (1) дополняется начальными и граничными условиями 
на гранях параллелепипеда и границе раздела фаз. На поверхностях 
раздела «твердое тело — жидкость» sl  и «твердое тело — газ» sg  

ставятся граничные условия прилипания 

0,  0.
sl sg

li giv v
 
                                       (2) 

На нижней l  и верхней g  гранях композита считается задан-

ным перепад внешних давлений 

,  .
l g

l el g egp p p p
 
                                    (3) 

На боковых гранях l  и g  ставится условие непротекания 

0,  0.
l g

i li i gin v n v 
                                   (4) 

На границе раздела фаз lg  формулируются условия для скачков 

давления и нормальной скорости 

  2
,  ( ) 0.c i li gip p n v v

R
                         (5) 
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Здесь cp  — безразмерное капиллярное давление;   — безразмер-

ный коэффициент поверхностного натяжения; R  — безразмерный 
радиус кривизны поверхности раздела фаз.  

В начальный момент времени 0t t  выполняются условия 

0 0
0 0,  .l l g gt t t t

p p p p
 

                                    (6) 

Положение неизвестной границы lg  раздела фаз определяется из 

уравнения  

 3
3 3 ( ), ,l

x
v x t t

t








 

где 3 ( )x t  — координата поверхности раздела фаз. 

Безразмерные коэффициенты вязкости в системе (1) можно выра-
зить через числа Эйлера и Рейнольдса 

ˆ 1
,

ˆ Eu Reˆ
m m

m
m mm

v

Lp

    
ˆ

,
ˆ ˆ
m m

m

m

v

Lp

   

где 
ˆˆ ˆ

Re m m
m

m

v L



 — число Рейнольдса; L̂  — характерный линейный 

размер композиционного материала.  

Если ввести малый безразмерный параметр ˆ ˆ 1,l L    равный 

отношению характерных размеров l̂  ячейки периодичности (ЯП) 

композита, и характерный размер всей пористой среды L̂ , можно по-
строить соотношения между безразмерными комплексами вида [21] 

0 0Eu Eu ,  Re(1) (1)R ,ek
m m

n
m mO O                       (7) 

где  , k n  — некоторые целые числа, соответствующие разным 
режимам течения фаз. Тогда безразмерные коэффициенты вязкости 
можно записать как 

0 0
0 0

ˆ ˆ
,  .

ˆ ˆEu Reˆ ˆ

k n
k n k nm m m m

m m m m
m mm m

v v

Lp Lp


                         (8) 

Здесь  0 0 01 Eu Re (1),m m m O    0 (1)m O   — главные части безраз-

мерных вязкостей. В настоящей статье рассмотрен режим течения 
2k   и 0.n   В этом случае  

2 0 2 0(1) (1)E ,   ,   .u ,   Re m m m mO O                          (9) 
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Наличие второго порядка малости в коэффициентах вязкости m  

и m  является допущением рассматриваемой задачи и физически 

обосновано малой вязкостью жидкости. Из формулы (9) следует, что 
имеет место медленное Стоксово (безынерционное) движение сла-
босжимаемой жидкости и газа в пористой среде. В этом случае нели-
нейное уравнение Навье — Стокса преобразуется в линейное уравне-
ние Стокса, и система (1) принимает вид 

 
 

 

2 0 0 2 0

0 0

0,

0,

,

1,3,    1,3,   , .

mt i m mi

i m m m i j mj m j j mi

m m m ml l l

v

p v v

p A p K

i j m l g

   

            

     

  

               (10) 

Для случая обобщенной модели слабосжимаемой жидкости си-
стема уравнений Стокса включает в качестве неизвестной гидроста-
тическое давление 0 ,lp  входящее в уравнение состояния, поэтому 

она является незамкнутой. Доопределим ее следующим образом. Не-
известные функции представим в аддитивном виде: 

0 1 0 1 0 1,   ,   , 1,3,   , .m m m m m m mi mi mip p p v v v i m l g             (11) 

Причем полагаем, что  

0 0 00,   0,   0, 1,3.    g g gip v i                       (12) 

После подстановки уравнения (11) в систему уравнений Стокса 
(10) и разделения ее на две системы получаем: 

 
0

2 0 0 2 0
0 0 0

0

0, ,

0, ,

0,


  

             







sl

i li i l

i l l l i j lj l j j li i l

li

v x V

p v v x V

v

        (13) 

 
1 0 1 1 0 1 1

2 0 0 2 0
1 1 1

1 1

1

( ) 0, ,

0, ,

,

0.
sl

mt i m mi m mi m mi i l

i m m m i j mj m j j mi i l

m m m

mi

v v v x V

p v v x V

p A

v


      

             

 






    (14) 

Если выполняются обе системы (13) и (14), то автоматически вы-
полняется и исходная система (10). Системы (13) и (14) являются зам- 
кнутыми: система (13) представляет собой постановку задачи 
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о медленном движении несжимаемой жидкости относительно функ-
ций 0 ,lp  0liv  (для газа эта система отсутствует в силу условия (12)), 

а система (14) является постановкой задачи движения газа и ОСЖ 
относительно функций 1 ,mp  1 ,miv  в ней 0 ,mp  0miv  рассматриваются 

как входные данные. 
Системы (10), (12) и (13) имеют область определения, представ-

ляющую собой поровое пространство со сложной внутренней гео-
метрией. Прямое численное решение задачи фильтрации в рамках 
этих постановок сильно осложнено.  

Асимптотический анализ уравнений движений газа и сла-
босжимаемой вязкой жидкости в пористой среде. Следуя общей 
концепции метода асимптотического осреднения [8–12, 22], помимо 

глобальных безразмерных координат ˆ
i ix x L  введем локальные ко-

ординаты ˆ .i i ix l x     В этом случае все функции (обозначим их 

),  описывающие течение газа и жидкости в порах, можно считать 

квазипериодическими, т. е. зависящими от локальных i  координат, 

глобальных ix  координат и времени .t  Также введем операцию осред-

нения функций по области поры mV  в рамках одной ЯП :V  

.  , ,
m

m m

V

dV m g l


                                 (15) 

Тогда 
m

m

V

dV


    — пористость среды. Пористость композита 

считаем известной и постоянной величиной.  
Решение систем (13) и (14) будем искать в виде асимптотических 

разложений по малому геометрическому параметру 

   0 1 2 (0) (1) 2
0 0 0 0 0 0( ), ( ) ,li li li L l lv v v O p p p O           

   0 1 2 (0) (1) 2
1 1 1 1 1 1

(0) (1) 2
1 1 1

( ), ( ),

( ).

mi mi mi m m m

m m m

v v v O O

p p p O

           

    
            (16) 

Все члены в асимптотических разложениях (16) являются функ-
циями глобальных и локальных координат  

( ) ( )
0 0 1 1 1    ( , , ), { , , , , }, 0, 1, ...,m m

i j i ix t v p v p m            (17) 

причем по i  эти функции полагаются периодическими.  

Подставляя разложения (15) в задачу (13) и применяя правило 
дифференцирования квазипериодических функций [16, 22], получаем 
асимптотические разложения системы уравнений движения несжи-
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маемой жидкости. Члены при отрицательных степенях малого пара-
метра 1  в этой системе и остальных степенях , 0,    1, . ..n n   при-
равниваем к нулю и получаем: 

1 (0) (0) (0)
0 0 0: 0, 0, 0;

sgi li i i liv p v



                        (18) 

0 (0) (1)
0 0

(0) (1) (0) (0)
0 0 1 2 0 2 0

(1)
0

: 0,

( ) 0,

0.




    



   

          


sg

xi li i li

xi l i l l l i j lj l j j li

li

v v

p p v v

v

      (19) 

Из первой системы (18) определяем, что (0)
0lp  не зависит от ло-

кальных координат i : (0)
0 ( ).l jp x  Тогда, присоединяя к уравнению не-

разрывности и граничному условию системы (18) уравнение равно-
весия жидкости из системы (19), получаем локальную задачу на ЯП 
для несжимаемой жидкости в нулевом приближении: 

(0)
0

(0) (1) (0) (0)
0 0 1 2 0 2 0

(0)
0

(1)
0

0,

( ) 0,

0,

0.





    



 

          



 

sg

i li

xi l i l l l i j lj l j j li

li

l

v

p p v v

v

p

     (20)  

Неизвестными в этой системе являются функции (0) (1)
0 0, ,li lv p  а гра-

диент давления (0)
0xi lp  рассматривается как входные данные. К си-

стеме (20) присоединяются условия периодичности функций, кото-
рые обозначаются как 

[[ ]] 0       1 2 1 2, , 1 2 , ,1 2 ,         

   1 3 1 3 2 3 2 3, 1 2, ,1 2, , ( 1/ 2, , ) (1/ 2, , ),                    (21) 

 (0) (1)
0 0, .li lv p   

Здесь 1/ 2 1/ 2i     — область ячейки периодичности .gV  

Условие нормировки (1)
0 0lp   в системе (20) введено для един-

ственности решения задач (20), (21). 
Общее решение локальной задачи (20) можно представить как 

формальную зависимость скорости и давления (0) (1)
0 0,li lv p  от входных 

данных — градиента (0)
0xi lp  
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(0) ( ) (0)
0 0

2

1
( ) ,j

li li k xj l
l

v W p  


 (1) ( ) (0)
0 0( ) .j

l l k xj lp P p                   (22) 

Здесь ( ) ( ),j
li kW  ( ) ( )j

l kP   — структурные функции, которые зависят 

только от локальных координат и вычисляются на основе решения 
задачи (20) на ЯП.  

Осредняя уравнение неразрывности в системе (19), с учетом того, 
что для любой периодической функции 0,i     получаем 

осредненное макроскопическое уравнение движения несжимаемой 
жидкости 

(0)
0 0.xi liv                                            (23) 

Подставляя (22) в (23), получаем осредненное уравнение для вы-
числения давления (0)

0lp  

(0)
0( ) 0,xi lij xj lK p                                       (24) 

где 

( )

2

1
( ) ,j

lij li k
l

K W    


 (0) (0)
0 0( )li lij k xj lv K p                  (25) 

являются компонентами тензора фильтрации несжимаемой части 
жидкости в пористой среде. 

Постановка локальной задачи для движения газа и сжимае-
мой части жидкости в порах. Подставляя разложения (16) в задачу 
(14) для газа и сжимаемой части жидкости, после применения прави-
ла дифференцирования квазипериодических функций получаем 
асимптотические разложения соответствующих уравнений этой зада-
чи. Приравняв к нулю члены асимптотического разложения при оди-
наковых степенях от малого параметра ,  можно записать следую-
щие системы уравнений: 

1 (0) (0) (0) (0) (0)
0 1 1 0 1 1

(0) (0) (0) (0)
1 1 1 1

: ( ) 0,

; 0, 0;
sg

i m mi m mi m mi

m m m i m mi

v v v

p A p v





 

     

    
                    (26)  

  


0 (0) (0) (0) (0) (0) (1)
1 0 1 1 0 1 0 1

(1) (0) (0) (0) (1) (1)
1 0 1 1 0 1

(0) (1) (0) (0)
1 1 1 2 1 2 1

(1) (1) (1)
1 1 1

: ( )

( ) ( ) 0,

( ) 0,

,



    



        

     

          

 

t xi m mi m mi mi i m mi

m mi mi m mi mi

xi m i m m m i j mj m j j mi

m m m mi

v v v v

v v v v

p p v v

p A v 0.



sg

     (27) 
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Из системы (26) получаем, что (0)
1mp  не зависит от локальных ко-

ординат ,i  следовательно, и (0)
1m  не зависит от i : (0)

0 ( ),m jp x  (0)
1 ( ).m jx  

Тогда, присоединяя к уравнению неразрывности и граничному усло-
вию системы (26) уравнение равновесия сжимаемой части жидкости 
из системы (27), получаем локальную задачу на ЯП для сжимаемой 
части жидкости в нулевом приближении: 

 (0) (0) (0) (0) (0)
0 1 1 0 1 1

(0) (1) (0) (0)
1 1 1 2 1 2 1

(0) (1)
1 1

0,

( ) 0,

0, 0.




    



    

          

  
sg

i m mi m mi mi

xi m i m m m i j mj m j j mi

mi m

v v v

p p v v

v p

       (28) 

Неизвестными в этой системе являются функции (0) (1)
1 1, .mi mv p  Вели-

чины (0) (0)
0 1,mi mv   и градиент давления (0)

1xi mp  рассматриваются как 

входные данные.  
Преобразуем уравнение неразрывности в систему (28). Поскольку 

(0)
1 ( ),m jx  0m  не зависят от ,i  получаем: 

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
0 1 1 0 1 1 0 1 1 0 1 1( ) 0.i m mi m mi m mi m i mi m i mi m i miv v v v v v                (29) 

Скорость (0)
0miv  удовлетворяет уравнению несжимаемости (20) 

(0)
0 0,i miv   поэтому (29) сводится к уравнению (0)

1 0,i miv   а задача (28) 

принимает вид 
(0)
1

(0) (1) (0) (0)
1 1 1 2 1 2 1

(0) (1)
1 1

0,

( ) 0,

0, 0.




    



 

          

  
sg

i mi

xi m i m m m i j mj m j j mi

mi m

v

p p v v

v p

      (30) 

Задача (30) формально в точности совпадает с задачей (20), по-
этому ее решение имеет такую же структуру, как и (22): 

(0) ( ) (0)
1 1 1

2

1
( ) ,j

mi mi k xj m
m

v W p  


 (1) ( ) (0)
1 1 1( ) ,j

m m k xj mp P p    

(0) 1 (0)
1 1 ,mi mij xj mv K p     1 ( )

1
2

1
( ) .j

mij mi k
m

K W    


           (31) 

Осредняя уравнение неразрывности в системе (27), с учетом того, 
что для всякой периодической функции 0,i     получаем 

осредненное уравнение движения для газа и сжимаемой части жид-
кости 
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 (0) (0) (0) (0) (0)
1 0 1 1 0 1( ) 0.             m mt m xi mi xi m mi miv v v         (32) 

С учетом системы (23) это уравнение можно записать как 

 (0) (0) (0) (0) (0)
1 0 1 1 0 1( ) 0.            m mt xi m m mi mi xi mv v           (33) 

Подставляя в выражение (33) уравнения (25) и (32), получаем ис-
комое осредненное уравнение для вычисления давления (1)

1mp :  

 (0) (0) 1 (0) (0) (0)
1 0 1 1 0 1( ) ,m mt xi m m mij xj m mij xj m xi mK p K p             . ,m l g    (34) 

Здесь введено формальное определение тензора фильтрации для газа 
0,gijK   тензор фильтрации lijK  для жидкости определяется по фор-

мулам (25), тензор фильтрации 1
mijK  вычисляется по формуле (31). 

Решение локальных задач. Далее рассмотрим многоканальную 
пористую структуру (см. рис. 1), у которой поры образуют продоль-
ные каналы вдоль каждого координатного направления .iO  Такая 

структура возникает у многих пористых материалов, в том числе у не-
пропитанных композиционных материалов, армированных тканями.  

Подставляя формулу (22) в задачу (20), после исключения гради-
ента (0)

0 xj lp  получаем набор локальных задач: 

  0,j
i liW   

 ( ) ( ) , ,jj j
i l li i i gP W h V                              (35) 

  0, ,
sg

j
li i sgW

     

   ( ) 0, [[ ]] 0, [[ ]] 0j jj
l li lP W P     

для определения функций     ,j
l iP       ,j

li iW   которые, в отличие от 

задачи (20), не содержат никаких свойств жидкости и не зависят от 
входных данных. Здесь      j j  — оператор Лапласа.  

Решение задач (35) определяется только внутренней геометрией 
пор. Функции ( )j

ih  вычисляются следующим образом: 

(0)
0( )

(0)
0

0, или ( и 0),

1, и 0.

     
  

xj lj
i

xj l

i j i j p
h

i j p
          (36) 

Введем компоненты тензора напряжений ( )j
likT  и тензора скоро-

стей деформаций ( ) j
likD  в жидкости: 
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    ( ) ( ) ( ) ( ) 1
2 ,    .

2
j jj j j j

lik l ik lik lik k ili lkT P D D W W                  (37) 

Тогда уравнение равновесия жидкости в системе (35) перепишем 
в виде 

 ( ) .j
ik i

j
k lT h                                            (38) 

Применяя теорему о симметричном и антисимметричном про-
должении, аналогичную приведенной в работах [16, 22], можно 
сформулировать локальную задачу (35) на 1/8 ЯП с граничными 
условиями на противоположных гранях 1/8 ЯП: 

( )
( )

( )
( )

( 2 ) 1 ( 2 ) 0;
1

0;  :
2

(1 ) 0;  , , 1,3.

                       
      

j
j i

li jk ki jk ki jk ki jk ki
k

k k j
j l

l jk jk
k

W
W

P
P i j k

(39) 

Каждая из задач системы (35) представляет собой стационарную 
задачу течения фиктивной линейно-вязкой несжимаемой среды. Реше-
ние задач (35) зависит только от внутренней геометрии пор, поэтому 
их постановка применима для расчетов фильтрации любых газов 
и жидкостей, которые могут быть рассмотрены в рамках выбранных 
моделей.  

Аналогичным образом в силу условия (31) можно представить 
решение задач (30). Поскольку эти задачи подобны, после исключе-
ния коэффициентов вязкости структурные функции ( )

1 ,j
liW  ( )

1
j

giW  

и ( )j
liW  совпадают, поэтому 

1 ( )

2

1
( ) ,j

lij lij li k
l

K K W     


 1 ( )

2

1
( ) ,j

gij li k
g

K W    


 

(0) 1 (0)
0 0 ,   mi mij xj mv K p   . ,m l g                               (40) 

Методы численного решения локальных задач (35) разработаны 
в работах [22–25]. 

Постановка макроскопических задач фильтрации газов и жид-
костей. Второе соотношение (25) представляет собой закон фильтрации 
Дарси для макроскоспического движения жидкости [22], а осредненное 
уравнение (24) является уравнением фильтрации несжимаемой части 
жидкости в порах композита 

(0)
0( ) 0,xi lij xj lK p    .j lx V                                (41) 
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С учетом того, что (0)
1mp  не зависит от локальных координат 

и имеет место уравнение состояния (0) (0)
1 1 ,m m mp A   после его подста-

новки в систему (34) получаем второе уравнение фильтрации для га-
зовой фазы и сжимаемой части жидкости в порах композита 

 (0) (0) 1 (0) (0) (0)
1 0 1 1 0 1( ) ,        
mt xi m m m mij xj m mij xj m xi mp A p K p K p p  , ,m l g    (42) 

где 1 1 / ,mij mij mK K   / .mij mij mK K   

Поскольку для газа (0)
0 0,giv   0gijK   и 0 0,g   из формулы (42) по- 

лучаем уравнение фильтрации газовой фазы: 
(0) (0) 1 (0)
1 1 1( ),  

gt xi g gij xj gp p K p  ,j gx V                         (43) 

а для сжимаемой части жидкости  

 (0) (0) 1 (0) (0) (0)
1 0 1 1 0 1( ) ,        
lt xi l l l lij xj l lij xj l xi lp A p K p K p p  .j lx V      (44) 

Здесь градиент давления (0)
0xj lp  является известной величиной, 

его можно найти из решения задачи (41). 
Метод введения динамических независимых координат для 

макроскопических задач фильтрации. Рассмотрим макроскопиче-
ские задачи (41), (43) и (44) для случая, когда области lV  и gV  пред-

ставляют собой параллелепипед, а граница раздела между ними 
lg  — плоскость, движущаяся вдоль координаты 3x  в направлении 

области .gV  Эта задача более похожа на классическую задачу Стефа-

на [26] с неизвестной заранее границей раздела взаимодействующих 
сред, положение и форма которых меняется с течением времени, но 
является существенно более сложной ввиду того, что сама система 
уравнений (43) и (41), (44) различна по разные стороны от поверхно-
сти раздела, кроме того, эти системы уравнений нелинейны, и урав-
нение движения поверхности раздела также нелинейное.  

Применим метод введения динамических независимых коорди-
нат, в которых положение границы раздела и области газовой и жид-
кой фаз не меняются в течение всего рассматриваемого времени. Для 
этого введем новые координаты 

1 1 2 2 3
3

1
,  ,  .X x X x X b

a kx
   


                            (45) 

Здесь коэффициенты ,a  b  и k  определяются из условий 

3 3

3 3

3 3 3 3

0 при 0,

 при

          

          ,

(0) при ( ) .

 

 

X x

X L x L

X x x x t 

 
 
 

                               (46) 
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Тогда производные по времени и пространственным координатам 
можно представить в виде 

3 ,t t i Xih                                          (47) 

,xi ij XjQ     

где ,Xi
iX


  


 а также 

 
3

2

3

,t t
t

a k x
h b

a kx


  


 3 3 ,ij ij i jQ r     

 2

3

1 .
k

r
a kx

 


         (48) 

После подстановки (47) в уравнения (41), (43) и (44) получаем 
формулировку макроскопической задачи неустановившейся совмест-
ной фильтрации слабосжимаемой жидкости и газа, которая состоит 
из уравнений 

(0)
0( ) 0,ni xi lij jk Xk lQ K Q p    ;j lx V                           (49) 

(0) (0) (0)
1 1 3 1( ) ,gt in xn gik xk g i Xi gp Q H p h p       ;j gx V                (50) 

(0) (0) (0) (0)
1 1 0 3 1( ) ( ,lt ij xj lik xk l lij xj l i Xi lp Q H p R p h p         .j lx V      (51) 

На нижней l  и верхней g  гранях композита считается задан-

ным перепад внешних давлений 

(0) (0) (0)
0 1 1,  0, .

l l g
l el l g egp p p p p

  
                     (52) 

На боковых гранях l  и g  задаются условия непротекания 

(0) (0)
0 10,  0,

l g
i lij jk Xk l i gik xk gn K Q p n H p

  
               (53) 

(0)
1 0.

l
i lik xk ln H p


   

На границе раздела фаз lg  задаются условия для скачков давле-

ния и нормальной скорости 

   (0) (0) (0) (0) (0)
0 1 1 0 1

2
,  0, 0.l g l i lij jk Xk l gik xk gp p p n K Q p H p

R
           (54) 

В начальный момент времени 0t t  выполняются условия 

0 0 0

(0) (0) (0)
0 0 1 1 0, 0,  .l l l g gt t t t t t

p p p p p
  

                 (55) 
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Здесь обозначены  

 (0) 1
0 1 , ,    

lik l l l lij jk lij ik nj lknH A p K Q R Q Q K  (0) 1
1 .gik g gij jkH p K Q    (56) 

Вариационные постановки макроскопической задачи неуста-
новившейся фильтрации. Все три уравнения фильтрации (49)–(51) 
имеют общую структуру 

( ) ,t ij xj ik xk i XiSp Q H p R p                            (57) 

где ,S  ikH  и iR  определяются самими формулами (49)–(51), а 
(0) (0) (0)
0 1 1{ , , }.l g lp p p p  

Рассмотрим уравнение (57) и построим для него вариационную 
формулировку. Введем специальные классы: 

1) скалярных переменных полей  , ,t X  определенных в ,V   

0,t   непрерывно-дифференцируемых один раз по iX  и t  и удо-

влетворяющих нулевому граничному условию на частях l  и g  по-

верхности   области :V  

0;
l g 

 
                                           (58) 

2) стационарных скалярных полей   ,X  определенных в обла-

сти .V  
Тогда, умножая (57) на   и интегрируя по области ,V  получим: 

 ( ) 0.t ij xj ik xk i Xi

V

Sp Q H p R p dV                       (59) 

Для начального условия 

0 ,  ,  0p p X V t                                       (60) 

можно записать 

 0 0.
V

p p dV                                         (61) 

Здесь  ,0 .ip p X   

Вычитая равенство (61) из формулы (59), получаем: 

 0( ) 0.ij xj ik xk i

V V

Xi

V V

p
S dV Q H p dV R pdV p p dV

t

           


     

(62) 
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Преобразуем второй интеграл в формуле (62). В силу того что на 
поверхностях l  и g  выполняется условие (53), на боковых поверх-

ностях образца — условие непроницаемости, а на границе раздела — 
условие равенства нормальных скоростей (5), получаем: 

( ) ( ) .ij xj ik xk xj ij ik xk

V V

Q H p dV Q H p dV                           (63) 

Будем называть нестационарное поле    ,  , 0i ip X t X V t   до-

пустимым, если оно является один раз непрерывно-дифферен- 
цируемым по iX  в V   и t  и удовлетворяет граничному условию 

(3). Допустимым стационарным полем  ip X  будем называть про-

извольное скалярное поле в .V  
Выберем   и   в виде ,  .p p       Тогда из формул (62) 

и (63) получаем: 

 0

( )

0.

xj ij ik xk

V V

Xii

V V

p
S p dV p Q H p dV

t

pR pdV p p p dV


     



      

 

 
                         (64) 

В силу произвольности вариаций p  и p  получаем искомую 
вариационную формулировку задачи: 

 0

( ) 0; (65)

0. (66)

xj ij ik xk

V V

Xi

V

i

V

p
S p dV p Q H p dV pR pdV

t

p p p dV

         

    





  


 

Метод конечных элементов для решения глобальной задачи 
фильтрации. Для численного решения вариационной задачи (65), 
(66) глобальной задачи будем использовать метод конечного элемен-
та [16, 24] с тетраэдральным симплекс-элементом. Введем коорди-
натный столбец значений нестационарного поля давления p  в узлах 
конечного элемента и матрицу функций формы 

   1 2 3 4
1 4

;
T

P P P P P


                                 (67) 

   1 2 3 4
1 4

,  ,  1, 4.i iN N N N N N L i


                   (68) 

Здесь iL  — L -координаты [27, 28]. Тогда давление и вариация дав-

ления на конечном элементе могут быть представлены как 



Многомасштабное моделирование процессов фильтрации… 

19 

  
4 11 4

p N P


    
4 11 4

.p N P


                                   (69) 

Аналогично для стационарного поля давления p  и его вариации 
p  можно получить: 

  
4 11 4

,p N P


     
4 11 4

.p N P


                                 (70) 

Здесь введены вектор значений стационарного поля давления в узлах 
конечного элемента 

   1 2 3 4
1 4

.
T

P P P P P


                                     (71) 

Далее введем векторы градиентов стационарного и нестационар-
ного полей давлений: 

   
1 3 1 31 2 3 1 2 3

,  .
T Tp p p p p p

g g
X X X X X X 

                      
          (72) 

После подстановки соотношений (70) в формулы (72) получаем 
выражения для градиентов: 

         
3 1 4 1 3 1 4 13 4 3 4

,  ,g B P g B P
    

                               (73) 

где введена матрица производных функций формы  
3 4

.B


 

Подставляя полученные соотношения в вариационную постанов-
ку (65), получаем: 

 
 

    4 1

4 1 4 14 4 4 4

.m m

P
C K P F

t


  


 


                             (74) 

Здесь введены матрицы и координатный столбец правой части 

         

            

   

1 2 2
4 4 4 1 1 4 4 4 4 4 4 4 4 4

1 2
1 34 4 4 3 3 3 3 4 4 1 3 44 4

4 1 4 1

1
,  ,

2

,  ,

.

TT

m m m m

V

T T T

m m m m

V V

T

m m

V

C N N dV K K K K

K B A B dV K N b B dV

F f N dV

      

     

 

 
          
 

   





 



 

           (75) 

Решение системы (75) может быть осуществлено методом конеч-
ных разностей. Пусть nt  — значение времени на n -м временном 

слое, 1nt   — значение времени на следующем временном слое, 

1n nt t    — шаг по времени. Тогда конечно-разностный аналог си-
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стемы (75) можно получить с помощью неявной схемы на основе 
правила трапеций [29]. Для производной по времени получаем: 

     1 .n n
P PP

t




 

                                   (76) 

Предполагается, что производная вычисляется в средней точке 
временного интервала, поэтому все функции времени также должны 
быть вычислены в этой точке. Для этого можно использовать при-

ближенное соотношение      1 .
2

n n
P P

P
 


  Тогда с учетом выра-

жения (76) уравнение (74) записываем в виде 

            1 1

4 1

,   , .
2

n n n n
m m

P P P P
C K F m l g

  



 
  


         (77) 

Здесь символ   означает принадлежность средней точке временного 
интервала. Выполняя группировку в последнем уравнении, приходим 
к искомой СЛАУ для каждого отдельного конечного элемента: 

         1
2 ,m m m m mn n

A p R p F
  


                          (78) 

где введены матрицы 

   2 2
,   .m m m mA C K R C K

   
                  

             (79) 

Отметим, что данная конечно-разностная схема построена на ос-
нове центрально-разностной схемы Кранка — Николсона, которая 
является безусловно устойчивой [23]. 

Моделирование процесса пропитки армирующего материала 
композита жидким связующим. Рассмотрим моделирование про-
цесса пропитки армирующего материала жидким связующим на ос-
нове разработанного численного метода. Свойства сред и значения 
основных параметров приведены в таблице, результаты расчетов 
отображены на рис. 2 и 3. 

Как видно из результатов, время пропитки армирующего матери-
ала связующим, рассчитанное на основе разработанной модели, со-
ставило 114 с. 

На рис. 2 и 3 вертикальными прерывистыми линиями показано по-
ложение поверхности раздела фаз (фронта пропитки жидким связую-
щим) в разные моменты времени. Распределение давления в компози-
ционном материале в процессе пропитки при методе RTM изменяется 
монотонным образом: от максимального значения на поверхности l  

подачи связующего под давлением до минимального значения на по-
верхности ,g  где происходит откачка воздуха. По мере распростра-
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нения фронта пропитки распределение давления становится все более 
равномерным в области за фронтом, резкий скачок давления сохраня-
ется только в окрестности самого фронта (см. рис. 2). 

Значения основных параметров расчета 

Параметр Значение 

Размеры образца, м 2 0, 2 0, 05   

Характерный размер ячейки пористого материа-
ла (предполагается одинаковым для всех фаз), м 

65 10  

Безразмерные коэффициенты проницаемости по-
ристой среды 

11

22

33

0, 003687676

0, 002496272

0, 002496272

K

K

K







 

Вязкость l
  жидкости, Па·с 0,2 

Вязкость g
  газа (воздуха), Па·с 51,81 10  

Коэффициент упругости жидкости ˆ ,K  м2/с2 610  

Коэффициент упругости газа ˆ ,gK  м2/с2 510  

Давление 0 ,lp  0 gp  в фазах в начальный момент 

времени, Па 
510  

Давление elp  жидкости на внешней границе, Па 610  

Давление egp  газа на внешней границе, Па 510  

 

Рис. 2. Графики распределения среднего по сечению макроскопического давления p  

в зависимости от продольной координаты для соответствующих положений грани- 
цы раздела фаз и разных моментов времени: 

 — 0,1 (3 с);  — 1,005022 (48 с);  — 1,714717 (96 с);  — 0,340197 (12 с);  
 — 1,191137 (60 с);  — 1,884458 (108 с);  — 0,603497 (24 с);  — 1,369582 (72 с); 

 — 1,96899 (114 с);  — 0,810645 (36 с);  — 1,543524 (84 с) 
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Рис. 3. Графики распределения средней по сечению компоненты 3v  макроскопиче-

ской  скорости в зависимости от продольной координаты для соответствующих по- 
ложений границы раздела фаз для разных моментов времени: 

 — 0,1 (3 с);  — 1,005022 (48 с);  — 1,714717 (96 с);  — 0,340197 (12 с);  
 — 1,191137 (60 с);  — 1,884458 (108 с);  — 0,603497 (24 с);  — 1,369582 (72 с); 

 — 1,96899 (114 с);  — 0,810645 (36 с);  — 1,543524 (84 с) 

 
Скорость 3v  движения жидкой и газовой фаз в армирующем кар-

касе композита максимальна непосредственно на самом фронте про-
питки. Перед и за фронтом движения связующего скорость суще-
ственно ниже и на удалении от фронта в обе стороны практически 
равна нулю. Локальный максимум скорости на фронте пропитки сна-
чала возрастает, а потом постепенно снижается, выходя на некото-
рый стационарный уровень.  

Полученные результаты качественно соответствуют реальной 
картине движения жидкого связующего в пористой среде. Тем самым 
разработанная модель может быть использована для прогнозирова-
ния режима пропитки композитных заготовок жидким связующим. 

Заключение. Разработана многомасштабная модель процессов 
фильтрации жидкого связующего в композитных конструкциях при 
изготовлении методом RTM. В качестве уравнений состояния жидко-
сти принята модель слабосжимаемой жидкости Маскета, для которой 
в качестве дополнительных условий задается поле стационарного 
гидростатического давления. Разработан метод асимптотического 
осреднения задачи движения слабосжимаемой жидкости и газа в по-
ристой среде, на основе которого сформулированы локальные задачи 
фильтрации газа и слабосжимаемой жидкости.  

Показано, что постановки этих локальных задач для жидкой и га-
зовой фаз совпадают между собой. Получены постановки макроско-
пической задачи фильтрации слабосжимаемой жидкости и газа. Для 
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решения этих задач использован метод введения динамических неза-
висимых координат, в которых положение границы раздела фаз не 
изменялось.  

Произведено численное моделирование процесса пропитки арми-
рующего наполнителя связующим на основе метода конечных эле-
ментов, определено время пропитки образца материала. 

Полученные результаты качественно соответствуют реальной кар-
тине движения жидкого связующего в пористой среде. Следовательно 
можно заключить, что разработанная модель может быть использована 
для прогнозирования режима пропитки композитных заготовок жид-
ким связующим. 
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Multiscale modeling of liquid binder filtration processes 

in composite structures manufactured by RTM 

© Yu.I. Dimitrienko, I.O. Bogdanov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
A mathematical model for the multiscale process of filtration of weakly compressible 
liquids and gases in periodic porous media is proposed with reference to the process of 
composite material production based on the RTM method. Using the method of asymptot-
ic averaging made it possible to formulate the so-called local filtration problems for 
a single pore and the global problem of unsteady filtration of weakly compressible liq-
uids. Two models of a weakly compressible fluid are considered: classical and general-
ized. The classical model is based on the Musket’s equation of the state, which requires 
initial constant values for fluid pressure and density to be preset. The generalized model 
is based on the same equation, but requires presetting only the initial fluid density, using 
the unknown hydrostatic pressure instead of the initial constant liquid pressure. The re-
sults of simulation of the impregnation process of a of filler material sample by a binder 
are presented using the two models of a weakly compressible liquid. 
 
Keywords: multiscale modeling, filtration, RTM method, composite materials, finite ele-
ment method, asymptotic averaging method 
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