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Предложен непараметрический критерий типа Кифера — Гихмана для проверки 
справедливости модели Кокса по нескольким прогрессивно цензурированным вы-
боркам. По каждой из выборок в качестве оценок функции надежности использо-
ваны оценки Каплана — Мейера. Доказано, что при справедливости гипотезы 
в качестве приближения асимптотического распределения статистики критерия 
может быть применено распределение Кифера — Гихмана. Разработан метод вы-
числения точных распределений статистики на основе модели случайного блужда-
ния частицы по многомерному массиву ячеек. Приведены таблицы полученных зна-
чений вероятностей точных распределений предложенной статистики для 
широкого набора возможных значений объемов выборок. Методами статистиче-
ского моделирования показана состоятельность метода оценки параметров Кокса, 
основанного на минимизации статистики. Представлены гистограммы полученных 
оценок для экспоненциального распределения наработок до отказа. Результаты ис-
следования находят применение при анализе результатов испытаний резервирован-
ных технических систем различной кратности, функционирующих в различных усло-
виях эксплуатации. Анализируемые системы используются во всех отраслях — от 
машиностроительных до радиоэлектронных. 
 
Ключевые слова: непараметрическая статистика, критерий типа Кифера — 
Гихмана, оценка Каплана — Мейера, прогрессивное цензурирование, модель Кокса 

 
Введение. Во многих задачах теории надежности [1–3] требуется 

проверить наличие степенных зависимостей между функциями 
надежности наработок до отказа изделий для нескольких режимов. 
Обозначим функцию надежности i -й выборки    1 , i iP t F t  

1, ,i q  где  iF t  — функция распределения i -й выборки. Тогда про-
веряемая гипотеза имеет вид 

       1 2
0 1 2 0: .... ,   qkk k

qH P t P t P t P t                      (1) 

где t  — время; q  — число режимов работы. 
Без ограничения общности можно считать, что 1 1,k  

1 2 ... .   qk k k  В случае 1, ik i  гипотеза является классической 
гипотезой однородности, для проверки которой используют критерий 
Кифера — Гихмана [4, 5]. Его статистика имеет вид  
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 2
1

max ,


 
q

i i
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T n F F  

где in  — объем i -й выборки, 
1

;



q

i
i

n n  

iF  — эмпирическая функция 

распределения i -й выборки; 1, ;i q  
1

1
( )


 

q

i i
i

F n F t
n

 — объединенная 

эмпирическая функция распределения.  
В работе [6] рассмотрено обобщение критерия Кифера — Гихма-

на на случай проверки справедливости модели Кокса (1). Однако 
в силу конструктивных особенностей изделий зачастую отказ одного 
элемента системы может приводить к снятию с эксплуатации всей си-
стемы. Это вызывает появление прогрессивно цензурированных дан-
ных, для анализа которых необходимы специальные методы обработ-
ки. В работе [7] предложен многовыборочный критерий однородности 
типа Кифера — Гихмана для нескольких прогрессивно цензурирован-
ных выборок. В данной статье проведено обобщение этого критерия 
на случай проверки справедливости модели Кокса.  

Постановка задачи. Имеется q  режимов работы   , .  1, i i q  

Во всех режимах i  испытывается in  систем, каждая из которых со-

стоит из im  последовательно соединенных элементов. Ввиду кон-

структивных особенностей изделий в результате испытаний можно 
наблюдать из наработок до отказа элементов систем только миниму-

мы     , 1, , 1 , ,   j
i ii q j n  а оставшиеся  1im  цензурируются. В итоге 

имеем q  прогрессивно цензурированных выборок  11
1 1 1, .  .., ,   
 n  

   21 1
2 2 1, ..., , ...    , , ..., ,        
 

qnn
q q q  составленных из отказов си-

стем [8, 9]. По результатам таких испытаний необходимо проверить 
гипотезу о том, что интенсивности отказов      1 2  , , ...,    qt t t  

элементов для q  режимов пропорциональны, т. е.  1 1 k t  

   2 2 ... ,    q qk t k t  где   1, 1, ik i q  — известные фиксирован-

ные числа. Тогда проверяемая гипотеза также имеет вид (1). Далее 
без ограничения общности будем считать, что 1 1 2 1, ... .    qk k k k  

Функции надежности элементов по каждой из выборок 


i  можно 

оценить с помощью оценок Каплана — Мейера [10, 11]: 
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 

 

 
 

 

   
1

1, 0,

1
1 , 1 1 ,

1

0, ,



 


 
          
 


 i

i

d t

i i i
i ij

i i

d t

P t d t n
m n j

d t n

 

где  id t  — количество элементов выборок ,


i  меньших .t  

Если справедлива гипотеза (1), то  


ik
iP t  оценивают одну и ту же 

функцию надежности  0 .P t  Заметим, что выборки  11
1 1,..., ,..., n  

 1 ,...,  qn
q q  можно рассматривать как полные (нецензурированные) 

независимые выборки из отказов систем с функциями распределения 
1 2, ,..., ,qG G G  где  1 1 .   imi

iG F  Их можно оценить эмпирически-

ми функциями распределения 1 2, ,..., ,
   qG G G     / , 1, . 

 i
i iG d t n i q  

Для проверки гипотезы (1) предлагается использовать критерий 
типа Кифера — Гихмана, статистика которого имеет вид  


    2

1
2 1

2

1

max .
    





 i

q
k

i i
i

t

n P P P q

T                    (2) 

Здесь  
1

 


i
q

k
i i

i

P P t  (где / , i in n  
1


q

i
i

n n );  
1

1 ;


  
 i i

q k mi
i

i

P G  

 
2

2

1 1

1 2
 

 
       

 
 

q q

i i i i
i i

S S  (где 
 2 1

1







i i

i i

m k

i m k
i i

P
S

m k P
); 1   

 
1

1 ;


 
q

i i
i

S  .
1


  


P

q
 

Если   , 1  , , i id t n i q  то положим 

    2

1
1

2

1

0.
    





 i

q
k

i i
i

n P P P q

 

Приближение асимптотического распределения  2 .T  Без огра-
ничения общности можно считать, что функции надежности каждой 

из выборок имеют вид  1( ) 1    ,  1, ,  ik
iP t t i q 0 1. t  Для вывода 
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приближения асимптотического распределения статистики рассмот-

рим эмпирический процесс       1 .  


ik
i i iy t n P t t  В работе [11] 

показано, что асимптотическая ковариация процесса  iy t  имеет вид 

    
  
 

/2

/2

1 1
, 1 1 , 0 1.

1
 

 

            
 

i i

i ii

m k
i

i m kn
i

k s
K s t t s s t

m s
   (3) 

Рассмотрим эмпирический случайный процесс  Y t  

     
2

2

1 1 1

,
  

 
       

 
  


i

q q q
k

i i i i j j
i i j

n P P y t y t  определяющий ста-

тистику (2). Учитывая (3), легко показать, что эмпирический случай-
ный процесс  Y t  слабо сходится при , 0  i i in n n  к рас-

пределению процесса  

     
2

1

1 1

,
 

 
     

 
 

q q

i i j j
i j

Y t y t y t  

где  iy t  — нормальный случайный процесс с характеристиками 

   0,iE y t          
  
 

/2

/2

1 1
, 1 1 ,

1
 

         
 

i i

i i

m k
i

i i i m k
i

k s
K s t Ey s y t t s

m s
 

0 1.    s t  

Лемма 1. При , 0,  i i in n n  0 1   t  п.н. 1 ; P t  

при 0 1 t п.н. 1 ; P t     п.н.
1 1,

1

1


    
q

i
i

t  

  
 

/2

/ 12

1 1
;

1


 




i i

i i

m k
i

m k
i

k t

m t
  

  
 

2
/2

п.н.
/ 12

1

1 1

1
 



        
 


i i

i i

m k
q i

i m k
i i

k t
t

m t
 

 
  

 

2
/2

/ 12
1

1 1
1 2 ;

1




        
 


i i

i i

m k
q i

i m k
i i

k t

m t
      п.н. 1

1





   


t
t t

q
. 

Здесь символ «п. н.» означает сходимость с вероятностью 1, или «по-
чти наверное». 
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Лемма 1 следует из теоремы Гливенко [1] и работы [12].◄ 
Перейдем к выводу математического ожидания и ковариации 

случайного процесса  1 .Y t  

Теорема 1. Математическое ожидание процесса  1Y t  имеет вид 

     
  

 
   

/2

1
1,/ 12

1
 

1 1
1 1 1 ,

1




 
     




i i

i i

m k
q i

i m k
i i

k t
EY t t t t

m t
 0 1.   t  

Доказательство. Обозначим    
1

.


  
q

j j
j

t y t  Так как про-

цессы  iy t  независимые, имеем 

     

    

2

1

1 1

2

1

 



            
 

      
 

 



q q

i i j j
i j

q

i i
i

EY t E y t y t

E y t t

 

            2 2 2 2

1 1

2
 

 
          

 
 

q q

i i i i i
i i

E y t y t t t E y t t  

 
  

 
 

2

2

/

1,/ 2
1

1 1
1 (1 ) .

1




 
    




i i

i i

m k
q i

i m k
i i

k t
t t

m t

 

◄ 

Аналогично работе [7], воспользуемся свойствами двумерного 
нормального распределения. Если  ,   — двумерный нормальный 

вектор с нулевым математическим ожиданием и матрицей ковариа-

ций 11 12

21 22

,
  

    
D  то 2 2 2

11 22 122 .      E  

Теорема 2. При 0 1    s t  ковариация эмпирического слу-

чайного процесса  1Y t  имеет вид 

   
  

 

2
/2

2

/ 12
1

1
 

1
, 2 1

1




        
 


i i

i i

m k
q i

i m k
i i

k s
K s t t

m s
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 
  

 
 

2
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2
/ 12

1

1 1
1 2 2(1 ) .

1




            
  


i i

i i

m k
q i

i m k
i i

k s
t s

m s
 

Доказательство. Получим выражение для ковариации эмпириче-

ского случайного процесса  1Y t . В соответствии с результатами, 

приведенными в работе [7], имеем 

    

               

1 1

2 2 2 2 2 2 2 2

1 1 1 1
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   



 
       

 
  

q q q q

i j i i
i j i i

E Y s Y t

E y s y t y s t s y t s t
 

Для первого слагаемого получим 

             2 2 2 2 2 2

1 1 1 1    
    

q q q q q

i j i i i j
i j i i j j

E y s y t E y s y t E y s y t  

  
 

  
 

 
  

 

/ /2 2

/ 2 / 22 2
1

2
/2

2

/ 12

1 1 1 1

1 1

1 1
2 1

1

 




       


            


i i i i

i i i i

i i

i i

m k m k
q i i

m k m k
i i i

m k
i

m k
i

k s k t

m s m t

k s
t

m s

 

  
 

  
 

/ /2 2

/ 2 / 22 2
1

1 1 1 1

1 1
 

 

   
 

 


i i i i

i i i i

m k m k
q q i j

m k m k
i j j i j

k s k t

m s m t
 

    
   

  
 

  
 

22 /4

2 / 24
1

/ /2 2

/ 2 / 22 2
1 1

1 1 1
2

1

1 1 1 1
.

1 1




 
 

  
 



         
 





i i

i i

i i i i

i i i i

m k
q i

m k
i i

m k m k
q q i j

m k m k
i j i j

t k s

m s

k s k t

m s m t

 

Применив аналогичные рассуждения для оставшихся слагаемых 
и суммировав полученные результаты, получим утверждение теоре-
мы.◄ 
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Преобразуем процесс  1Y t  так, чтобы при некотором преобразо-

вании времени   :[0, 1] [0, ]   1 u t  его математическое ожидание 

и ковариация совпадали с математическим ожиданием и функцией ко-

вариации процесса       2
1

, [0, 1]   . 


  
q

i i
i

Z t n F t F t t  Этот процесс 

используется при проверке гипотезы однородности q  полных выбо-
рок, и его математическое ожидание и функция ковариаций равны  

     1 1 ,  EZ t q t t  

       22
1 2 1 2 1 22 1 1 , 0 1.     EZ t Z t q t t t t  

Для этого введем процесс  

   
 

1

, 
Y t

Y t
h t

 

где    0, 0 1 h t h  — некоторая функция.  

Очевидно, что       11/ , EY t h t EY t       EY s Y t  

         1 11/ . h s h t EY s Y t  Учитывая полученную функцию кова-

риации процесса  1Y t , имеем     cov ,   Y s Y t  
 
 

 
 

2
2 1

. 


t s

h t h s
 

Положим    
2

1 .
1


 
   
  

t
h t t

q
 Рассмотрим функцию 

  :[0, 1] [0,   1], u t  
 

 1
1 , 1, 1 1.  


   

t
u t u

h t
 Легко показать, что 

 u t  монотонно возрастает. Имеем    
 

2
2 1

1 .


 
t

u
h t

 Заметим, что 

   . t h t  

Тогда функцию ковариации процесса        
  

1

2




 


Y t u
W u Y t u

t u
 

запишем так: 
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         
     

     
     

   

1 1 1 1
1 2 1 2

1 2 2 2 2 2
1 2 1 2

22
1 2 1 22 1 1 , при .

   

  
   

   

Y t u Y t u EY t u EY t u
EW u W u E

t u t u t u t u

q u u u u

 

Здесь  t u  — обратная функция к  .u t  

Исходя из того, что при изменении математического ожидания 
случайного процесса ковариация не меняется, преобразуем случай-
ный процесс  W u  таким образом, чтобы получить математическое 

ожидание, которое тоже будет совпадать с математическим ожидани-
ем процесса  Z t . 

Введем новый процесс 

 
             

  
1,

*
2

 
1 1 1

.
 



       


Y t u t u q t u t u
W u

t u
 

Учитывая, что  

     
 

 
 
 

 
 

    
 

  
         

   

1, 1,*
2

1,

1

  

 

 ,

1 1
1 1

1

1
1 1 1 1

1

1 1 1
1 1

1

 

  





 



  
    

  

         
    

     
    

 

tt t t
EY t u q

t t qt

t
u u q

qt

u u q t q t
u u q

q t

 

  
 

     1,2  
1

1 1 1 , 


      


t
u u q t q t

t
 

получим требуемое математическое ожидание  * EW u  

   1 1 .  q u u  

В результате математическое ожидание и ковариация процесса 

                    * 2
1, 

1 1 1 /  
         

W u Y s u t u q t u t u t u

совпадают с математическим ожиданием и ковариацией суммы квад-
ратов броуновских мостов. Тогда, аналогично работе [7], можем счи-
тать, что для больших объемов выборок в качестве приближения 
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асимптотического распределения статистики 2T  может быть исполь-
зовано распределение Кифера — Гихмана [7, 13].  

Точные распределения  2 .T  Для вычисления точных распреде-

лений 2T  воспользуемся q-мерной моделью случайного блуждания. 
Частица двигается по q-мерному массиву ячеек    

 1 .  , , .. 0   1  , , ,   
qj j i ia j n i q  выходя на первом шаге из ячейки 

0, .. .,0 a  и оканчивая блуждание в ячейке 
1 2  , , ..., .

qn n na  Более подробно 

рассматриваемый далее метод описан в общем виде в работе [12]. 
Зададим объединенный вариационный ряд выборок 1 2   , , ..., ,  

  
q  

составленных из наработок до отказа систем,  1,..., ,   


n  

1, 1 . , 1    j j j n  Введем вектор  1, ...,  , nz z z  положим ,jz i  

если  j  — элемент i-й выборки. Для удобства вычислений обозна-

чим    1 , 1, . 
i ik k i q  

Пусть i
j  — количество элементов выборки  ,


i  на первых j  ме-

стах в векторе  1, ...,  , nz z z  
1

.


 
q

i
j

i

j  Тогда  1
1




  
q

i
i j i i

i

n m k  — 

объем множества риска перед j -м отказом в вариационном ряду . j  

Ниже в несколько измененном виде приведена лемма, доказанная в 
работе [7]. 

Лемма 2. Распределение векторов 

z  при справедливости (2) име-

ет вид 

 
  

 

1
1

1

1
1

1

.

 









 














i i
j j

q
i

i j i in
i

q
ij

i j i i
i

n m k

p z

n m k

◄ 

При прохождении частицы через ячейку 
1, ... , qj ja  функция 

    2 2
1

1

1 /


 
       

 


 i
q

k
i i

i

n P P P q  принимает значение, равное 

1, ...,   
qj j  

1 1, ..., , ... ,   / .
q qj j j jA B  

Здесь 

  1 1 1 1

1
,..., ,..., ,..., ,...,

1

1 1 ,


              


i i

q q q q

k mq
i

j j j j i j j j j
ii

j
A q

n
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   

1,...,

1 11 1

1 1
1 1 ,

1 1  

 

                                     
  

q

i ii i

i i

j j

k kj jq q

i i
i i i i i ii is s

n
m n s m n s

 

1

1, ... ,
, ... ,

1

1 ,
1 

  
      


i i

q

q

k mqj j i
j j i

ii

j
B

q n
 

2

1

1

2

1

1 1

,

1







              
        





i ii i

i ii i

m kk mq
i

i i
ii

i m kk mq
i

i i
ii

j
k

n

W

j
m

n

 

 
1

1
, ..., 

1
 1 ,



  q

q

j j i i
i

W   
1

2

2
, ...,  

1 1

1 2 .
 

 
       

 
 q

q q

j j i i i i
i i

W W  

Теорема 3. Вероятность  2 P T h  равна величине  
1 2, , ...,   .

qn n n h  

Ее можно получить, применив рекуррентное соотношение 

 

   

 

   
 

 

1 2

1 2

1 2

1 2

, , ...,

1 1 1 1
1, ,...,

1 1
1

, , ...,

, , .

   

   

  .., 1

1

 

1
...

,
1









 

  
   

      
      

  
       







 



 

q

q

q

q

j j j

j j j q

i i i i
i

j j j
q q q q

j j j q

i i i i q q
i

h

m k n j
h

m k n j m k

h
m k n j

h

m k n j m k

     (4) 

с начальными и граничными условиями:  0, ..., 0 1, h  1, 0, ..    .,0 ...    

  0, ...,0 1 , 0.    

Здесь   1 2

1 2

  , , ...,
, , .

 
   ..,

1, , 0 ,

0, в противном случае.

     


q

q

j j j i i
j j j

h j n
h  

Доказательство. Условие 
1 2, , ...,    

qi i i h  определяет множество 

ячеек, при прохождении через которые траектории случайного блуж-
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дания, значение случайного процесса функции  2
1


 





i

q
k

i i
i

n P P  

  2
1( 1)    P q  не превосходит h. Тогда утверждение тео-

ремы следует из леммы 2 и результатов работы [14].◄  
В таблице для проверки справедливости модели Кокса для трех 

выборок представлены точные вероятности 2( ),P T h  вычисленные 
согласно соотношению (4), в случае равных объемов выборок при 

1 2 3 2  m m m . 

Точные вероятности  2( )P T h  для трех выборок при 3,186h   

n  
3,186h  

1 2 31; 2; 3  k k k  1 2 31; 1, 5; 2  k k k  

100 0,9842 0,9852 

200 0,9853 0,9862 

300 0,9853 0,9861 

400 0,9854 0,9860 

500 0,9852 0,9859 

600 0,9852 0,9859 

700 0,9851 0,9858 

  0,9848 0,9848 

 
Аргумент 3,186h  является квантилем уровня 0,9848 предель-

ного распределения Кифера — Гихмана. Таким образом, для практи-
ческих целей можно использовать асимптотическое распределение, 
начиная с объемов выборок больше 100.  

Оценки параметров Кокса. Полученный критерий типа Кифера — 
Гихмана позволяет проверять гипотезы о возможных значениях пара-
метров модели Кокса. Однако во многих случаях наиболее важна оцен-
ка данных параметров.  

Предположим, что значения параметров 2  , ,ik i q  неизвестны. 

Их оценки могут быть получены минимизацией статистики (2).  
Методами статистического моделирования проведено исследова-

ние точности получаемых оценок с помощью алгоритма, представ-
ленного ниже. Алгоритм моделирования является обобщением алго-
ритма, представленного в работах [14, 15].  

1. Моделируем 1 1n m  наработок до отказа с функцией распределе-

ния  0 .F t  
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2. Наработки случайным образом разбиваем на 1n  групп по 1m  

величин в каждой. В результате  
1

1, 1,
11 ,..., , 1,  j j

m j n  — элементы 

j -й группы. Определяем  
1

1, 1,
1 1min ,..., .   j j j

m  

3. Для  2,i q  аналогичным образом моделируем i in m  одинаково 

распределенных случайных величин 1( , ..., )  
i i

i i
m n  с функцией рас-

пределения    1/

01 1 ,
 
  

 

ii
kk

F t  где ik  — некоторое заданное зна-

чение параметра. Наработки 1( , ..., )  
i i

i i
m n  случайным образом разби-

ваем на in  групп по im  величин в каждой. Элементы j -й группы 

обозначаем  , ,
1 , ...,    , , 1 .  

i

i j i j
im j n  Определяем  , ,

1min ,..., .   
i

j i j i j
i m  

4. В результате имеем q  выборок  11
1 1 1, .  .., ,   
 n  

   21 1
2 2 1, ..., , ...    , , ..., .        
 

qnn
q q q  Для заданных значений пара-

метров 0 0, 1 , 2,  i i ik k K i q  по полученным выборкам вычисляем 

значение статистики типа Кифера — Гихмана  2
02 03 0, , ...,   .

qT k k k  

5. В качестве оценок 2   ,  ,

ik i q  определяется набор значений 

0 , 2, ,  ik i q  минимизирующий значение статистики  2
02 03 0, , ...,   .

qT k k k  

 

Гистограммы оценок параметров Кокса: 

а — 
2

2;k  б — 
3

3k  

 
При численных расчетах для определения статистических свойств 

предложенных оценок параметров п. 1–5 повторялись 500 раз. В каче-
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стве распределения  0P t  рассмотрено экспоненциальное распреде-

ление с параметром 0,001.   Гистограммы полученных оценок 

02 03,
 
k k  для 1 2 3 2,  m m m  1 2 3 50,  n n n  2 2k  и 3 3k  при-

ведены на рисунке. 
Для полученных оценок были рассчитаны средние значения, со-

ставившие 02 2,1048,

k  03 3, 2297.


k  Данные результаты свидетель-

ствуют о допустимости применения предложенного метода оценки. 
Заключение. В работе предложен критерий для проверки спра-

ведливости модели Кокса для нескольких независимых прогрессивно 
цензурированных выборок. Для нахождения оценок функций надеж-
ности использованы оценки Каплана — Мейра. Показано, что в каче-
стве приближения асимптотического распределения может быть ис-
пользовано распределение Кифера — Гихмана. Предложен метод 
вычисления точных распределений предлагаемой статистики. Мето-
дом Монте-Карло получены оценки параметров модели Кокса. Полу-
ченные результаты находят широкое применение при проведении 
форсированных испытаний сложных систем в случае чрезмерной 
продолжительности обычных испытаний.  
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Cox model validity checking for several 
progressively censored samples 

© V.I. Timonin, N.D. Tyannikova  

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The article proposes a nonparametric criterion of the Kiefer — Gihman type to test the 
Cox model validity for several progressively censored samples. As estimates of the relia-
bility function for each sample we are using the Kaplan — Meyer ones. 
The paper proves that if the hypothesis is valid, the Kiefer — Gihman distribution can be 
used as an approximation of the asymptotic distribution of the criterionstatistics. Based 
on the particle random walk model over a multidimensional cells array, the paper has 
developed the method for calculating the exact statistics distributions. The article pre-
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sents obtained probability values tables of the proposed statistics exact distributions for 
a wide range of samples possible values. Statistical modeling methods show Cox parame-
ters estimating method consistency, based on the statistics minimization. We present the 
obtained estimates histograms for the developments exponential distribution to failure.  
The research results are used when analyzing the redundant technical systems of differ-
ent multiplicity tests results operating in different operating conditions.  
Analyzed systems find applications in all industries — from machine building to radio 
electronic. 
 
Keywords: nonparametric statistics, Kiefer — Gihman type criterion, Kaplan — Meyer 
estimates, progressive censoring, Cox model 
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