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УДК 539.3  

Теория пластин, основанная на методе  
асимптотических разложений 

© С.В. Шешенин, К.А. Скопцов 

МГУ им. М.В. Ломоносова, Москва, 119991, Россия 

Приведено сравнение результатов асимптотического анализа поперечного изгиба 
многослойной пластины под воздействием поверхностной нагрузки с классически-
ми теориями тонких и толстых пластин. Слои пластины полагаются составлен-
ными из однородных упругих ортотропных материалов. 

Ключевые слова: асимптотический метод, метод осреднения, слоистая пласти-
на, теории тонких и толстых пластин, пластины Кирхгофа и Миндлина — 
Рейснера.  

 
Одним из способов упрощения трехмерной краевой задачи явля-

ется понижение размерности, которое может быть проведено, напри-
мер при учете малости каких-либо параметров, входящих в задачу. 
Поскольку толщина пластины мала по сравнению с ее другими ха-
рактерными размерами, пластину можно моделировать плоскими ко-
нечными элементами, функции формы для которых получают исходя 
из решения вспомогательной задачи деформирования тонкого тела. 
Понижение размерности при этом может быть осуществлено при по-
мощи методов асимптотического анализа [1, 2], заменяющих тради-
ционные гипотезы теории пластин. 

Исследование асимптотического поведения уравнений равнове-
сия при помощи рядов специального вида, применяющихся при 
осреднении уравнений с периодическими быстроосциллирующими 
коэффициентами [1–3], позволяет при некоторых допущениях о гра-
ничных условиях на боковой поверхности построить решение, 
асимптотически сходящееся к решению задач трехмерной теории 
упругости. Для случая пластин применение асимптотического разло-
жения в ряд началось с работы [4]. Обзор литературы можно найти в 
[2]. Анализ первых трех приближений приведен в [5, 6]. Исследова-
ние пологих оболочек дано в [7]. Сравнение асимптотической теории 
пластин с трехмерной теорией можно найти в [8, 9]. 

Разложение в асимптотический ряд позволяет разделить трех-
мерную задачу линейной теории упругости на серию одномерных 
задач, решения которых (так называемые локальные функции) зада-
ют распределение компонент вектора перемещения и тензора напря-
жений по вертикали, и двумерную задачу, по своей структуре анало-
гичную задачам классических теорий пластин. 

Цель статьи состоит в том, чтобы показать, каким образом из 
асимптотического разложения возникает бигармоническое уравнение 
теории пластин Кирхгофа — Лява [10] и уравнения теорий толстых 
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пластин [11–12]. Частично этот вопрос уже рассмотрен в [13]. Также 
в статье описана общая процедура получения локальных функций и 
уравнений произвольного приближения для изгиба слоистой анизо-
тропной пластины. Отметим, что при выводе уравнений не исполь-
зуются гипотезы, свойственные классическим теориям пластин. Рас-
смотрение касается только случая линейной теории. Асимптотиче-
скому анализу нелинейной проблемы посвящена работа [14], а также 
работы [15, 16], в которых изучена задача изгиба тонких пластин из 
физически нелинейного материала.  

Постановка задачи. Рассматривается краевая задача линейной 
теории упругости: уравнение равновесия 

  , , , 0ij j ijkl k lC u j     (1) 

в области  /2, /2= h h   с границей n d=     с граничными 

условиями 

 ,ij j ijkl k l j in = C u n = s  (2) 

на части границы n и 0iu = на части границы .d  
Асимптотическое исследование проводится при 0.h   Примем, 

что модули упругости ijklC  зависят только от вертикальной координа-

ты. Удобно считать, что область определения модулей упругости нор-
мирована толщиной пластины, т. е. модули упругости в слое 3x суть 

 3 .ijklC x h  Границу области ,  которую занимает тело в плоскости 

1 2 ,Ox x  обозначим .  Если не сказано иного, будем полагать, что 

нагружена лишь верхняя граница  3 / 2x = h  нагрузкой  1 2,is x x   

3 3.is   Начнем с замечания относительно гипотезы Кирхгофа — Лява. 
Гипотеза Кирхгофа — Лява и линейная часть поля переме-

щений. Гипотеза Кирхгофа — Лява состоит в том, что поле переме-
щений в тонкой однородной изотропной пластине, находящейся в 
состоянии изгиба, представляется в виде 

 
   

   
1 2 3 3 1 2

3 1 2 3 1 2

, , , ;

, , , , 1, 2,
I Iu x x x x w x x

u x x x w x x I

 
 

  (3) 

где  1 2,w x x  — прогиб пластины. Здесь и далее прописными латин-

скими буквами будем обозначать индексы, принимающие значения 1, 
2 в отличие от индексов, обозначаемых строчными латинскими бук-
вами, принимающими значения 1, 2, 3. 

Покажем, что указанные представления суть главные линейные 
части поля перемещений трехмерной задачи. Не снижая общности, 
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считаем, что  1 2, , 0 0IJ x x   (состояние изгиба без растяжения-

сжатия отсчетной поверхности). Из уравнений равновесия следует 

  3,3 1 2, , 0 0,I x x   (4) 

откуда      2
3 1 2 3 3 1 2 3, , , , 0I Ix x x x x O x     при 3 0.x   Так как 

 3 1 2, , /2 0,I Ix x h s    то    2
3 1 2 3, ,I x x x O h   при 0h   и 

3 const.x h   В силу ортотропности пластины, как следствие, имеем 

   2
3 1 2 3, , .I x x x O h   Значит,  

      2
,3 1 2 3 3, 1 2 3, , , , .I Iu x x x u x x x O h   (5) 

Разложим Iu  в ряд по 3,x  тогда 

        2
1 2 3 1 2 3 ,3 1 2 3, , , , 0 , , 0 .I I Iu x x x u x x x u x x O x    (6) 

Обозначив    1 2 3 1 2, , , 0 ,w x x u x x  с учетом соотношения (5) и 

 1 2, , 0 0Iu x x   получаем из (6) следующее выражение 

        2 2
3 3, 1 2 3 1 2, , 0 , ,I I Iu x u x x O h x w x x O h       (7) 

что в первом приближении соответствует гипотезе Кирхгофа —  
Лява. 

Для вертикальной компоненты поля перемещений можно прове-
сти похожие рассуждения. А именно в силу уравнений равновесия 
имеем на свободной границе 

  33,3 1 2, , /2 0,x x h    (8) 

откуда    2
33 1 2 3, ,x x x O h   при 0.h   Значит,  3,3 1 2, , 0u x x   

 2 ,O h  следовательно, получаем  

      2
3 1 2 3 1 2, , , ,u x x x w x x O h   (9) 

что также соответствует гипотезе Кирхгофа — Лява. Поэтому в рабо-
тах [5, 6] первые члены асимптотического ряда для представления 
поля перемещений в трехмерной задаче теории упругости были вы-
браны в виде (7), (9). 

Асимптотическое понижение размерности задачи. Представ-
ленное рассмотрение может быть упрощено и обобщено при помощи 
асимптотического анализа. Будем искать решение задачи (1), (2) в 
более общем виде, чем в [5, 6]: 
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        ,
0

, ,i i ij ju x w x h N w x
 

 
     (10) 

в котором 1 2, ,x x x  и суммирование проводится по всевозможным 
непустым мультииндексам .  

Уравнения равновесия (1) предполагаются выполненными при 
подстановке 3 .x h   Таким образом,   играет роль «быстрой» ко-
ординаты, как в стандартном методе осреднения [1, 3]. 

Подстановка ряда (10) в выражение ,ij ijkl k lC u   для компонент 

тензора напряжений и приведение подобных по степеням параметра h  
дает асимптотический ряд 

 1
,

0

,ij ijk kh P w
 

 
    (11) 

в котором 

 3ijk L ijrL rk ijr rk LP C N C N     и .ik ikN    (12) 

Здесь и далее штрихом обозначена производная соответствующей 
функции от   по .  

Дальнейшая процедура понижения размерности состоит в разде-
лении задачи теории упругости на задачу определения локальных 
функций ,ikN   зависящих от «быстрой» вертикальной координаты, и 
задачу определения функций ,kw  зависящих от «медленных» пла-
нарных координат. При этом n-м приближением мы будем называть 
асимптотический анализ при учете всех слагаемых рядов (10), (11) 
при 1n    (номер приближения соответствует максимальной сте-

пени h  в ряде (11)). 
Нахождение локальных функций. При помощи выбора локаль-

ных функций ikN   можно асимптотически обратить дифференци-
альное уравнение равновесия (2) в тождество. Подстановка ряда (11) 
в уравнение равновесия (2) дает формальное равенство 

  11
3 , 3 ,

0

0.i kL k L i k L iLk k Lh P w h P P w 
  

 
     (13) 

Если потребовать выполнения равенств 

 3 0i kLP   и 3 0,i k L iLkP P     (14) 

то левая часть (13) станет асимптотически эквивалентна нулю. Эти 
равенства являются обыкновенными дифференциальными уравнени-
ями второго порядка на функции ,ikN   решения которых приобре-
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тают единственность при наложении дополнительных условий на ло-
кальные функции. Конкретный вид дополнительных условий выби-
раем исходя из граничных условий трехмерной задачи, для которой 
проводится понижение размерности. При этом разные условия при-
водят к различным теориям пластин. Примеры таких условий рас-
смотрены в следующем разделе, а непосредственно далее предложе-
на рекуррентная процедура поиска локальных функций. 

Предположим, что найдены все локальные функции ijkP   и .ikN   

Покажем, как найти все функции ijk LP   и ik LN   следующего при-

ближения. Уравнения (14) позволяют получить все i3k LP   с точно-
стью до постоянных слагаемых, которые можно фиксировать допол-
нительным условием. Из соотношений (12) (при 3)j =  можно выра-
зить :ik LN   

              3 3
0

0 ,ik L ik L ir r k L r pL pkN N M t P t C t N t dt


         (15) 

где  M   — матрица, обратная матрице чисел  3 3 .i rC   Остается 

воспользоваться соотношениями (12) при 1,2j =  для нахождения 
оставшихся функций :iJk LP   

  3 3 3 .iJk L iJrL rk iJr rs s k L s pL pkP C N C M P C N       (16) 

Как видно из соотношений (15), кроме условий на 3 ,i k LP   для од-
нозначности локальных функций требуются условия, позволяющие 
фиксировать  0 .ik LN   О них и пойдет речь далее. 

Получение двухмерной задачи. Покажем, как можно удовле-
творить нагрузке ,is  распределенной по верхней лицевой поверхно-
сти тела 3 /2x h  (в линейной задаче можно без потери общности 
считать, что 0is =  на нижней лицевой поверхности). Наложим на 

функции ijkP   условия  3 1 / 2 0.i kP     Они обеспечивают равенство 

нулю вектора напряжений на свободной границе. Тогда граничные 
условия при 3 /2x h  можно записать следующим образом: 

      1
3 , 1 2 1 2

0

1 / 2 , , .i k k ih P w x x s x x
 

 
  (17) 

Как отмечалось, для однозначного определения всех локальных 
функций ijkP   и ikN   требуется серия дополнительных условий, ко-

торые определяют физический смысл функций .kw  
В классических теориях пластин принято считать прогиб w  вер-

тикальным перемещением серединной поверхности (в теории Мин-
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длина [11]) или же усредненным вертикальным перемещением  
(в теории Рейсснера [12]). Аналогичным физическим смыслом обла-
дает поле kw  при выборе условий вида  

  0 0ikLN =  (18) 

или 

  
1/2

1/2

0.ikLN d


    (19) 

В первом случае функции kw  имеют смысл перемещений сере-
динной поверхности, а во втором — усредненных перемещений вер-
тикальных отрезков тела. 

Уравнение (17) (формально бесконечного порядка) может быть 
стандартным образом преобразовано к последовательности уравне-
ний конечного порядка подстановкой 

 
0

n
k kn

n

w h w



   (20) 

и приравниванием членов при одинаковых степенях h . При этом по-
лучаются уравнения вида 

    , 1 2 1 2, , ,ik kn i
m

D w x x f x x 
 

  (21) 

в которых m  — наименьший порядок ненулевых ,ikD   а if  выра-

жаются через is  и ,klw   при l < m  и 2 .m l    Заметим, что в дан-

ном пункте описана общая процедура получения двумерного уравне-
ния, в том числе и для случая 0.Is   Далее подробно изучается слу-
чай поперечного изгиба, когда 0.Is   

Локальные функции нулевого приближения. Покажем, как 
при помощи вышеописанной методики получить локальные функции 
нулевого приближения. В силу условия  3 1 /2 0i kLP    и уравнений 

(14) имеем    3 3 0.ikL i kLP P     Последнее равенство эквивалентно 

уравнению 

 3 3 3 0.i kL i r rkLC C N    (22) 

Соотношения (15) принимают вид 

        
0

0 .ikL ikL ir r3kLN = N M t C t dt


    (23) 
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Теперь можно выразить IJkLP  через найденные функции согласно 
(16): 

 3 3 .IJkL IJkL IJr rp p kLP C C M C   (24) 

Заметим, что при 3k =  формула (23) приобретает вид 

    3 3 0 ,i L i L iLN N      (25) 

что с учетом любого из условий вида (18) или (19) превращается в 
 3 .i L iLN      Это значит, что нулевое приближение асимптотиче-

ского метода при нулевых Iw  и отсутствии растяжения-сжатия от-
счетной поверхности дает поле перемещений вида 

      1 2 3 3 3 1 2 3, 1 2, , , , ,i i iu x x x w x x h w x x     (26) 

соответствующее гипотезе Кирхгофа — Лява. Еще раз отметим, что  
в [5, 6] это соотношение в нулевом приближении принималось апри-
ори, а последующие приближения получались с помощью асимпто-
тического разложения. 

Уравнения третьего приближения в частном случае. Проде-
монстрируем полную процедуру получения уравнений третьего при-
ближения в частном случае симметричных (относительно плоскости 

3 0)x  свойств пластины. 

Для начала заметим, что коэффициенты  3 1 /2i kP   двумерной 

задачи (17) могут быть выражены через функции 3i kP   меньших по-

рядков: 

       
1/2 1/2

3 3
1/2 1/2

1 / 2 .i k L i k L iLkP P d P d  
 

          (27) 

Если 3,i =  то такое преобразование может быть проведено еще 
один раз: 

   
1/2

33 3
1/2

1 /2k LR Rk LP P d 


      

    
1/2

3
1/2

1 /2 / 2 .Rk L LRkP P d 


       (28) 

Применив к первому слагаемому правой части (28) преобразова-
ние (27), получим в итоге 

    
1/2

33
1/2

1
1 / 2 .

2k LR LRkP P d 


      
   (29) 
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Для простоты дальнейшего изложения примем 0Iw =  и 

   3 1 2 1 2, ,w x x w x x  и будем искать лишь 3ijP   и 3 .iN   Нетрудно 

показать, что для симметричных пластин при отсутствии горизон-
тально направленной составляющей нагрузки эти предположения 
справедливы. При 3k =  соотношение (24) принимает вид 3 0.IJ LP   
Поэтому 33 0,i LQP   соответственно 33 3 3 0,i LQ i LQP P   а вот функ-

ции 3 ,IJ LQP  определяемые из соотношений (16), вообще говоря, от-

личны от нуля. Это значит, что в силу (14) 33I LQRP  также отличны от 

нуля. При этом 333LQRP  по-прежнему равны нулю. Отсюда можно 

сделать вывод, что первое асимптотическое приближение позволяет 
получить аппроксимацию компонент ,IJ  второе — компонент 3,I  
третье — 33.  

Итак имеем, что все  333 1 /2P   при 4<  равны нулю. Однако 

функции  333 1 /2LQRSP  отличны от нуля и могут быть выражены с 

помощью (29) в виде 

    
1/2

333 3
1/2

1
1 / 2 .

2LQRS RS LQP P d


      
   (30) 

Если материал пластины изотропен, то вычисления показывают, 
что 

    2 3
333 1 / 2 1 ,

12LQRS
E

P Dh     (31) 

где D  — стандартная изгибная жесткость пластины, а первое (и 
единственное) из уравнений (21) при условии 3

3s h  принимает вид 

    1 2 3 1 2, , ,IIJJDw x x s x x  (32) 

что соответствует уравнению для прогиба в теории Кирхгофа — Ля-
ва. Подчеркнем еще раз, что это уравнение получается в третьем 
приближении, т. е. при учете всех слагаемых ряда (11) для ij  поряд-

ка 3h  и ниже. При этом заметим, что для вычисления ij и получения 

уравнения (32) не обязательно искать функции ikN   при 2,   а 

достаточно найти все функции только первого приближения, так как 
функции ijkP   разных приближений связаны между собой по форму-

лам (27), (30).  
Решив уравнение (32) с граничными условиями на боковой по-

верхности [1, 2, 8], можно по формулам (11), (12) найти напряжения 
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.ij  При этом в разложении (11) имеет смысл рассматривать лишь 

первые члены с ненулевыми локальными функциями (т. е. IJ  могут 

быть найдены с погрешностью порядка 2,h  3I  — с погрешностью 

порядка 3,h  а 33  — с погрешностью порядка 4 ) .h  
Рассмотрение же всех уравнений (21), соответствующих пятому 

приближению (т. е. при учете всех слагаемых ряда для ij  порядка 
5h  и ниже), дает при том же предположении относительно 3s  (т. е. 

3s  порядка 3)h  соотношение вида 

  1 2 3 3, ,IIJJ II
a

D
Dw x x s s

k h
 


 (33) 

характерное для теорий толстых пластин (Рейснера — Миндлина). 
Поле ,w  найденное по уравнению (33), имеет погрешность порядка 

3,h  поэтому формулы (11), (12) позволяют найти IJ  с погрешно-

стью порядка 4,h  3I  — с погрешностью порядка 5,h  33  — с по-

грешностью порядка 6.h  
Сравнение с теорией толстых пластин. В качестве типичной 

теории толстых пластин рассмотрим теорию Миндлина [10], [11], 
иногда называемую теорией Тимошенко. В теории Миндлина поле 
перемещений (в отсутствие растяжения-сжатия) представлено в виде 

    1 2 3 3 1 2, , ,I Iu x x x x x x    и    3 1 2 3 1 2, , , .u x x x w x x  (34) 

При этом считается, что  1 2,w x x  есть прогиб серединной по-

верхности. Поле деформаций представлено в виде 

       1 2 3 3 , 1 2 , 1 2
1

, , , , ;
2IJ I J J Ix x x x x x x x       (35) 

       3 1 2 3 1 2 1 2
1

, , , , .
2I I Ix x x k w x x x x     (36) 

Множитель k  в формуле (36) обычно принимается отличным от 1 
(в то время как дифференцирование соотношений (34) дает 1).k = Это 
связано с тем, что распределение касательных деформаций по 3x  в 
трехмерной задаче близко к параболическому, а в (36) 3I  не зависят от 

3.x  Потому k  обычно выбирают так, чтобы внутренняя энергия де-
формации соответствовала тем или иным соображениям адекватности 
теории [10], [17]. Наиболее распространенные значения: 5 /6k =  и 

4 /5.k   
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Теория Миндлина при     3
1 2 3 1 2, ,p x x s x x h   приводит к 

уравнениям для прогиба w  и углов   отклонения нормали от верти-
кального направления: 

 ;II
IIJJ

p p
w

D k h
 


 (37) 

 ,I I II
p

w
k h

  


 и      1,2 2,1 1,2 2,1
2

.
1II

k h
D


       

 
 (38) 

Уравнение (33), аналогичное (37), получается при применении 
асимптотического метода в пятом приближении. При наложении на 
локальные функции условия (18) функции w  из разложений (10) и 
(34) приобретают одинаковый смысл  3 1 2, , 0 .u x x  Поэтому множи-

тель k  может быть найден из уравнения пятого приближения (33), в 

котором 
5 29

.
6 6 12 7

k


 
 

 

Отметим, что несмотря на совпадение уравнений для прогиба, 
теория Миндлина дает качественно другие распределения деформа-
ций (и соответственно, напряжений) по толщине пластины, чем пятое 
приближение асимптотического метода. В асимптотическом методе 

IJ  представляют собой линейные функции с углом наклона, равным 

IJw  с поправками порядка 3,h  пропорциональными кубу верти-
кальной координаты, а 3I  с точностью до поправок распределены 
параболически по толщине пластины. В теории Миндлина IJ  ли-
нейны по толщине, но с другим угловым коэффициентом (отличаю-
щимся от IJw  на величину порядка 2,h  которая задается уравнени-
ями (38)), а 3I  постоянны по толщине.  

Выводы. Описана общая процедура понижения размерности 
трехмерной задачи линейной теории упругости для случая изгиба 
толстой слоистой ортотропной пластины, основанная на разложении 
поля перемещений в асимптотический ряд. Для частного случая из-
гиба симметричной пластины получены уравнения третьего и пятого 
приближений, аналогичные уравнениям классических теорий пла-
стин. Дано сравнение с теориями Кирхгофа — Лява и Миндлина. 

Достоинством предложенного метода является отсутствие кине-
матических гипотез (типа гипотезы Кирхгофа — Лява или Рейссне-
ра), обычно используемых для анализа тонких и толстых пластин. 
Наоборот, кинематические гипотезы можно считать следствием ре-
зультатов асимптотического анализа. 

Работа выполнена частично при поддержке гранта РФФИ  
13-01-00688. 



Теория пластин, основанная на методе асимптотических разложений 

59 

ЛИТЕРАТУРА 

 Бахвалов Н.С., Панасенко Г.П. Осреднение процессов в периодических 
средах. Математические задачи механики композиционных материалов. 
Москва, Наука, 1984. 

 Levinski T., Telega J.J. Plates, Laminates and Shells. Asymptotic Analysis and 
Homogenization. New York, World Scientific Publishing Co., 2010. 

 Победря Б.Е. Механика композиционных материалов. Москва, Изд-во 
Моск. ун-та, 1984. 

 Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying 
thickness. Int. J. Solids and Struct, 1984, pp. 333–350. 

 Шешенин С.В. Асимптотический анализ периодических в плане пластин. 
Изв. РАН. Механика твердого тела, 2006, № 6, c. 71–79. 

 Шешенин С.В. Применение метода осреднения к пластинам, периодиче-
ским в плане. Вестник Моск. ун-та. Сер. 1. Математика и механика, 
2006, № 1, с. 47–51. 

 Скопцов К., Шешенин С. Асимптотический анализ слоистых пластин и 
пологих оболочек. Изв. РАН. Механика твердого тела, 2011, № 1, с. 161–
171. 

 Димитриенко Ю.И., Яковлев Д.О. Сравнительный анализ решений 
асимптотической теории многослойных тонких пластин и трехмерной 
теории упругости. Инженерный журнал: наука и инновации, 2013,  
№ 7(19). URL: http://engjournal.ru/articles/899/899.pdf  

 Димитриенко Ю.И., Губарева Е.А., Сборщиков С.В. Асимптотическая 
теория конструктивно-ортотропных пластин с двухпериодической струк-
турой. Математическое моделирование и численные методы, 2014, № 1, 
с. 36–57. 

 Reddy J.N. Theory and analysis of elastic plates. Philadelphia, Taylor and 
Francis,  1999. 

 Mindlin R.D. Influence of rotary inertia and shear on flexural motions of iso-
tropic, elastic plates. ASME Journal of Applied Mechanics, 1951, vol. 18, pp. 
31–38. 

 Reissner E. The effect of transverse shear deformation on the bending of  
elastic plates. ASME Journal of Applied Mechanics, 1945, vol. 12, pp. 68–77. 

 Скопцов К., Шешенин С.В. Асимптотический метод получения уравне-
ний теории пластин Рейсснера — Миндлина. Вестник Моск. ун-та.  
Сер. 1. Математика и механика, 2013, № 2, с. 65–67. 

 Ghosh S., Lee K., Moorthy S. Two scale analysis of heterogeneous elastic-
plastic materials with asymptotic homogenization and Voronoi cell finite ele-
ment model. Comput. Methods Appl. Mech. Enrgr, 1996, no. 132, pp. 63–116. 

 Шешенин С.В., Савенкова М.И. Осреднение нелинейных задач в механи-
ке композитов. Вестник Моск. ун-та. Сер. 1. Математика, механика.  
2012, № 5, с. 58–61. 

 Шешенин С.В., Савенкова М.И. Об осреднении композитов при наличии 
нелинейности. Упругость и неупругость. Доп. материалы Международ-
ного научного симпозиума по проблемам механики деформируемых тел, 
посвященного 100-летию со дня рождения А.А. Ильюшина. Москва, Изд-
во Моск. ун-та, 2012, с. 260–269. 

 Yu Liu, Chee-Kiong Soh. Shear correction for Mindlin type plate and shell el-
ements. Int. J. Numer. Meth. Engng, 2007, no. 69, pp. 2789–2806. 

Статья поступила в редакцию 02.09.2014 



С.В. Шешенин, К.А. Скопцов 

60 

Ссылку эту на статью просим оформлять следующим образом: 
Шешенин С.В., Скопцов К.А. Теория пластин, основанная на методе 

асимптотических разложений. Математическое моделирование и числен-
ные методы, 2014, № 2, с. 49–61. 

Шешенин Сергей Владимирович — д-р физ.-мат. наук, профессор, зам. заведу-
ющего кафедрой «Механика композитов» механико-математического факультета 
МГУ им. М.В. Ломоносова. e-mail: sheshenin@mech.math.msu.su 

Скопцов Кирилл Александрович — аспирант кафедры «Механика композитов» 
механико-математического факультета МГУ им. М.В. Ломоносова.  
e-mail: arbrk1@gmail.com 

Theory of plates based on the method of asymptotic  
decompositions 
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The paper presents comparison of asymptotic analysis of a composite plate lateral bend-
ing under the impact of surface load against classical theories of thin and thick plates. 
Layers of the plate are assumed to be homogeneous linear elastic orthotropic materials. 
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