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Рассмотрена модель слоистого иерархически построенного композита, структу-
ра которого имеет морфологию, подобную фрактальному образованию. Разрабо-
тан алгоритм исследования взаимодействия переменного электрического поля 
с фрактальным композитом, а также программный комплекс, позволяющий осу-
ществлять моделирование фрактальных характеристик исследуемого композита и 
производить расчеты электрических параметров композитной среды. Исследованы 
границы применения разработанной модели: максимальные и минимальные размеры 
композита, при которых проявляются фрактальные свойства. Изучены частотные 
зависимости диэлектрической проницаемости фрактального композита. 
Результаты исследования могут быть использованы при конструировании мате-
риалов с заранее заданными электрофизическими параметрами и характеристи-
ками, а также при разработке элементов и устройств, обладающих поглощаю-
щими и селективными свойствами.  
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Введение. На сегодняшний день одно из приоритетных направ-
лений исследований наукоемких технологий производства компози-
тов многофункционального назначения — разработка и проектиро-
вание материалов с заданными свойствами [1]. Большинство работ 
в области моделирования композиционных материалов направлено 
на изучение классических слоистых структур, а также структур 
с различными формами включений частиц и волокон [2–8]. Исследо-
вателями предложен ряд моделей для слоистых дисперсных систем, 
позволяющих рассчитывать эффективные электродинамические, ме-
ханические и прочие параметры. Однако, несмотря на значительные 
достижения в этой области, существующие модели не позволяют ре-
шить ряд актуальных теоретических и практических задач, таких как 
определение качественных свойств слоистых периодических струк-
тур сложной морфологии, в частности композита, имеющего иерар-
хически построенную структуру, подобную фрактальному образова-
нию. Такие объекты демонстрируют свойства самоподобия и потому 
могут рассматриваться как фрактальное образование [9].  

Для фрактальных структур характерно многообразие свойств 
и функциональных связей, указывающих на значительные возможно-
сти таких систем по сравнению с традиционными. Элементы на ос-
нове таких структур применяют в конструкциях антенн, устройств 
широкополосной радиолокации, при создании средств трассировки 
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мобильных объектов, синтезе поглощающих материалов, разработке 
приложений в области защиты информации и пр. [10], что подтвер-
ждает актуальность изучения таких композитных сред и их взаимо-
действия с электрическим полем. Тем не менее экспериментальное 
определение электродинамических параметров фрактальных компо-
зитов может быть затруднительным, трудоемким, дорогостоящим, а в 
некоторых случаях и вовсе невозможным. Тогда мощным инстру-
ментом исследователя может служить математическое и компьютер-
ное моделирование фрактальных композитов, позволяющее получить 
в дальнейшем результаты для решения прикладных задач. 

Цель настоящего исследования — провести анализ электриче-
ских характеристик фрактального композита, находящегося в пере-
менном электрическом поле. Для ее достижения необходимо решить 
следующие задачи: разработать математическую и компьютерную 
модели, провести оценку допустимого интервала масштаба фрак-
тального композита, разработать алгоритм исследования и про-
граммный комплекс, позволяющий проводить вычисление фракталь-
ных характеристик исследуемого композита и расчеты электрических 
параметров композитной среды. 

Математическое и компьютерное моделирование. Объект ис-
следования — модель слоистого иерархически построенного компо-
зита, который находится в переменном электрическом поле напря-
женностью ,E  частотой   и обладает комплексной диэлектрической 

проницаемостью .eff  Иерархически построенный композит состоит 

из двух видов материалов, тогда 1  и 2  — диэлектрическая прони-

цаемость веществ первого и второго материала соответственно, из 
которых состоит композит. Первым слоем в модели композита явля-
ется материал, характеризующийся толщиной слоя 1d  (геометриче-

ский параметр). Второй слой — материал, представляющий иерархи-
чески построенный композит с комплексной диэлектрической 
проницаемостью _eff n  слоя и толщиной слоя 2.d  Компьютерная мо-

дель фрактального композита, выполненного в среде SketchUp, пред-
ставлена на рис. 1. При увеличении масштаба второго слоя структура 
демонстрирует свойства самоподобия, что характеризует такую мо-
дель как фрактальный объект.  

Математическая модель взаимодействия слоистого иерархически 
построенного композита с переменным электрическим полем осно-
вана на теории эффективной среды [11], суть которой заключается 
в том, что совокупность кластеров, из которых состоит композит, 
рассматривается как некая новая однородная среда с таким же уров-
нем поляризации. По отношению к макроскопическому полю, усред-
ненному по объему, система является однородной, поэтому ее можно 
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охарактеризовать определенным эффективным значением диэлек-
трической проницаемости. Такой подход реализован с помощью ма-
тематической модели среды, состоящей из уравнения Пуассона для 
распределения электростатического поля в непроводящей среде при 
наличии электрических зарядов, включающего в себя комплексную 
эффективную диэлектрическую проницаемость: 

0

( , ) ( , ) ( , )
,

    
  

   eff

E x E y x y

x y
                                 (1) 

где E  — напряженность электрического поля;   — плотность заряда. 

 

Рис. 1. Модель слоистого иерархически построенного композита:  
z — уровень  фрактальности;  стрелки  обозначают  направление вектора  

напряженности электрического поля E  

 
Среда анизотропна, поэтому диэлектрическая проницаемость eff  

(см. рис.1) зависит от направления распространения поля и является 
тензором: 
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31 32 33

.
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eff                                         (2) 

В данной статье рассматриваем двумерный случай, поэтому тензор 
эффективной диэлектрической проницаемости имеет компоненты: 

_

1

,

( )

 
 

    




i j
eff xx n
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n

eff yy nn
                     (3) 

Число компонент зависит от количества слоев, образующих компо-
зит, с различными значениями .  Для физической модели (см. рис. 1), 
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включающей два материала с диэлектрическими проницаемостями 1  

и 2  соответственно, комплексную диэлектрическую проницаемость на 

первом этапе построения будут описывать уравнения теории эффектив-
ной среды для слоистых композитных сред в комплексной форме [12]. 

Для поля, направленного вдоль направления слоев, уравнения 
имеют вид: 

1 1 2 2

1 2

,
  

 
eff

d d

d d
 1 1 2 2

1 2

,
    

eff
d d

d d
 1 1 2 2

1 2

,
    

eff
d d

d d
            (4) 

а для поля, направленного поперек направления слоев  
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2 1 1 2
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Уравнения математической модели (1)–(5) дополним граничными 

Г Г maxГ       ,  ,   , :  ( , )      V d VxE x y yE R  

и начальными условиями 

00 0 min       ,  ,  ( , , ) ,:       E E x y x y Z  

где  V d VR  — радиус Ван-дер-Ваальса химических элементов, из ко-

торых состоит композит; Z  — размер композита; max ,  min  — мак-

симальная и минимальная частоты воздействия поля соответственно; 

Г|  и 0|  — граничные и начальные условия соответственно.  

При увеличении уровня фрактальности уравнения математической 
модели (1)–(5) дополним путем подстановок выражений (4) в (5) или 
(5) в (4) с использованием разработанных алгоритмов. Диэлектриче-
ская проницаемость таких структур будет иметь вид: 
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eff

eff eff

eff eff

f d d

f d d

f d d
 

где ,    — операторы геометрической эволюции компонентов ком-
позитной среды. 

Рабочие алгоритмы и программный комплекс. Для исследова-
ния указанных на рис. 1 структур были разработаны рабочие алгоритмы 
и программный комплекс [13]. При повышении уровня фрактальности 
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возрастает порядок степени параметров — членов нелинейных уравне-
ний в комплексных переменных. Для эффективной реализации решений 
полученных уравнений и увеличения производительности оптимизиру-
ющего компилятора использован метод множителей Лагранжа с задан-
ными условиями Каруша — Куна — Таккера. Для описания качествен-
ных свойств исследуемых композитных сред применены методы 
фрактальной теории. Обосновано применение такого подхода путем 
выполнения условий критерия Ф. Такенса. Для определения границ 
применимости и нахождения корреляционного показателя введен кри-
терий, отражающий чувствительность фрактальной размерности струк-
туры изучаемых композитных сред к исследуемым геометрическим 
и электродинамическим характеристикам. Проведена оценка интерва-
лов масштабов фрактального композита: в качестве примера рассматри-
вается композит Si-Al, Si Al( ) ( ) 210    V d V V d VR R  пм. Для компози-

та морфологии (см. рис. 1) с увеличением уровня фрактальности размер 
слоя будет изменяться согласно таблице.  

Зависимость толщины слоя от уровня фрактальности композита 

Уровень фрактальности Толщина слоя, м 

0 10–2 

1 2,5·10–3 
2 6,3·10–4 

… … 
12 (max) 5,9·10–10 

13 1,5·10–10 < 2,1·10–10 ( (Si, ))Al V d VR  

 

Рис. 2. Исходные значения комплексной диэлектрической прони-
цаемости зависимостей   от длины волны :  

 — Re Si;  — Im Si;  — Re Al;  — Im Al;  
 — Re Si-Al;  — Im Si-Al 
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Рис. 3. Зависимости комплексной диэлектрической проницаемости   
от длины волны   на разных уровнях фрактальности; поле направле- 

но поперек (а) и вдоль (б) направления слоев: 
, ,  — Re Si-Al, 1, 6, 12 (max) fractal Ivl соответственно; 
, ,  — Im Si-Al 1, 6, 12 (max) fractal Ivl соответственно 

 
Таким образом, для фрактальной модели (см. рис. 1) в случае 

композита Si-Al допустимый интервал масштабов при начальном 
размере слоя, равном 1 см, ограничен 12-м уровнем фрактальности. 
Чувствительность фрактальной размерности элементов структуры 
композитных сред к изменениям их качественных параметров вычис-
ляется по методике Большакова — Дубровина. Результаты модели-
рования показаны на рис. 2–3. В качестве исходных данных были 
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взяты табличные значения параметров для веществ, рассмотренных 
в работе [14]. 

Заключение. В настоящей статье разработан алгоритм исследо-
вания взаимодействия переменного электрического поля с фракталь-
ным композитом и программный комплекс, позволяющий проводить 
вычисление фрактальных характеристик исследуемого композита и 
расчеты электрических параметров композитной среды. В результате 
проведенного исследования было установлено: 

 частотные зависимости действительной и мнимой частей ком-
плексной диэлектрической проницаемости исследуемых композит-
ных сред имеют нелинейный характер; 

 в областях электронной и ионной поляризаций наблюдается 
ряд резонансных всплесков;  

 для слоистого фрактального композита (Si-Al) максимальным 
является 12-й уровень фрактальности;  

 уровень фрактальности слоистых структур оказывает суще-
ственное влияние на изменение электрических свойств композита.  

Исследование фрактального композита теоретическим и расчет-
ным путем, приведенное в работе, позволяет определить условия 
проявления различных электродинамических эффектов и установить 
оптимальные требования к подготовке синтеза реальных образцов. 
Результаты исследования могут быть использованы при конструиро-
вании материалов с заранее заданными электрофизическими пара-
метрами и характеристиками, а также для разработки элементов и 
устройств, обладающих поглощающими и селективными свойствами.  
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The study tested a model of a layered hierarchically constructed composite, whose struc-
ture has a morphology similar to fractal formation. In our research we developed an al-
gorithm for studying the interaction of an alternating electric field with a fractal compo-
site, as well as a software package that allows simulating fractal characteristics of the 
composite under study and calculating the electrical parameters of the composite medi-
um. Moreover, we studied the boundaries of the developed model application: the max- 
and min-dimensions of the composite, at which fractal properties appear. We investigat-
ed the frequency dependences of the permittivity of a fractal composite. 
The results of the research can be used in designing the materials with predefined elec-
trophysical parameters and characteristics, as well as in developing the elements and de-
vices that possess absorbing and selective properties. 
 
Keywords: mathematical simulation, computer simulation, composite, fractal structure, 
software complex, nonlinear dynamics 
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