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УДК 539.3 

Конечно-элементное моделирование  
эффективных вязкоупругих свойств  

однонаправленных композиционных материалов 

© Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков  

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложена методика расчета эффективных вязкоупругих характеристик ком-
позиционных материалов при установившихся циклических колебаниях, основанная 
на методе асимптотического осреднения периодических структур и конечно-
элементном решении локальных задач вязкоупругости на ячейке периодичности 
композитов. Приведены примеры численного моделирования вязкоупругих харак-
теристик однонаправленно-армированных композитов и расчетов комплексных 
тензоров концентрации напряжений в ячейке периодичности. Проведен сравни-
тельный анализ зависимостей тангенса угла потерь комплексных модулей упруго-
сти композита от частоты колебаний, полученных с помощью метода конечных 
элементов и по приближенным смесевым формулам. Показано, что использование 
приближенных смесевых формул для расчета вязкоупругих характеристик, кото-
рые часто применяют для оценки диссипативных характеристик композитов, 
может давать существенную погрешность в расчетах.  

Ключевые слова: композиты, вязкоупругость, установившиеся колебания, ком-
плексные модули упругости, однонаправленные композиты, метод асимптотиче-
ского осреднения, метод конечных элементов, тангенс угла потерь, численное мо-
делирование.  

Введение. Исследование вязкоупругих характеристик полимер-
ных композиционных материалов имеет важное значение для разра-
ботки демпфирующих конструкций авиационной, судостроительной 
и автомобильной промышленности [1, 2]. Для создания таких кон-
струкций необходимы расчеты эффективных вязкоупругих характе-
ристик композитов в зависимости от содержания их структурных 
компонентов, которые позволили бы находить оптимальные рецеп-
турные составы композитов [3, 4]. Для расчета эффективных упругих 
характеристик композитов часто используют приближенные смесе-
вые формулы [5, 6], которые для некоторых типов композитов, на-
пример однонаправленных, дают хорошие результаты армирования. 
Для более точного вычисления упругих характеристик композитов 
достаточно эффективным является метод асимптотического осредне-
ния, который в сочетании с методом конечных элементов (МКЭ) поз-
воляет вычислять характеристики композитов для любых структур 
армирования [7–10]. Методам расчета вязкоупругих характеристик 
композитов, основанным на методике асимптотического осреднения 
посвящены работы [11–15].  
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Целью настоящей статьи является применение метода асимпто-
тического осреднения для расчета вязкоупругих характеристик ком-
позитов при гармоническом нагружении — так называемых ком-
плексных модулей упругости [16, 17], и проведение сравнительных 
расчетов модулей упругости для однонаправленных композитов с 
помощью метода конечных элементов и приближенных смесевых 
формул.  

Постановка задачи линейной вязкоупругости при цикличе-
ских колебаниях. Рассмотрим задачу механики линейно вязкоупру-
гой среды [17] при гармонических колебаниях при относительно не-
высоких частотах, когда инерционными силами можно пренебречь: 
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Здесь   — набла-оператор [18]; , σ ε  — комплексные амплитуды 

тензоров напряжений и деформации; u — комплексная амплитуда 
вектора перемещений; ( )tS — вектор заданных поверхностных ком-

плексных амплитуд напряжений на части границы 2;  ( )e t


u  — век-
тор заданных комплексных амплитуд перемещений на части границы 

2;  n  —  вектор внешней нормали; 4 C  — тензор 4-го ранга — тен-
зор модулей упругости, зависящий от приведенной частоты колеба-
ний ( ),a     где  ( )a    — функция температурного сдвига, 

1 2,a a  — константы;   — температура, 0     , а 0  — началь-
ное значение температуры; 
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где 4 ( )K  — тензор ядер релаксации. 
Для изотропных вязкоупругих материалов тензор модулей упру-

гости имеет две независимые константы: K — модуль объемного 
сжатия и G — модуль сдвига, а тензор ядер релаксации имеет две не-
зависимые функции ( )KK t и ( )GK t — ядра объемной и сдвиговой 
релаксации, причем для большинства твердых сред объемной релак-
сацией можно пренебречь [19], тогда тензоры 4 C  и 4 ( )tK  можно 
представить в следующем виде [17]: 
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где   — единичный тензор 4-го ранга; E  — метрический тензор. 
После подстановки выражений (3) в (2) получаем  
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— комплексный модуль сдвига.  
Принимаем для функции релаксации ( )GK   модель экспонен-

циальных ядер [17, 19]: /
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  где A ,   — вязкоупру-

гие константы материала (спектр релаксации и спектр времен релак-
сации). Тогда для G*-комплексного модуля сдвига имеем следующее 
аналитическое выражение от приведенной частоты колебаний: 
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 В рамках рассмотренной модели вязкоупругие характеристики 
изотропных материалов характеризуются следующим набором 
констант: , ,G K ,A  ,  1 2, ,a a  где 1 ... .mN   Комплексный модуль 

упругости матрицы *E и комплексный коэффициент Пуассона *  
вычисляют по формулам, формально совпадающим с формулами для 
упругих констант [19]:  
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Применение метода асимптотического осреднения для вязко-
упругих композитов. Рассмотрим вязкоупругий композит, состоя-
щий из N компонент и обладающий периодической структурой. На 
границах раздела компонент будем полагать выполненными условия 
идеального контакта  

  [ ] 0;  σ n  [ ] 0, u   (7)  



Конечно-элементное моделирование эффективных вязкоупругих свойств… 

31 

где [] — скачок функций. Тогда для композита можно сформулиро-
вать задачу (1), но тензор комплексных модулей упругости 4 *C  будет 
зависеть еще и от координат, в качестве которых выберем локальные 
координаты ξ  ячейки периодичности (ЯП) композита [7–10, 20] 

/ , ξ x  где x  — глобальные координаты; /l L   — малый пара-
метр; l — характерный размер ЯП; L — глобальный размер конструк-
ции из ПКМ тогда 4 * 4 *( , ). C C ξ  Функции ( , )u x ξ  и 
4 * 4 *( , ) C C ξ  будем считать периодичными по ξ . Введем также 

обозначения для производных по x  и ξ : i
x ix
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ie  — векторы базиса. Имеет место следующее правило дифференци-
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    x ξ Тогда в соответствии с методом асимпто-

тического осреднения представим перемещения *u , являющиеся ре-
шением задачи (1), в виде асимптотического разложения по степеням 
малого параметра :  
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Для напряжений и деформации также имеет место асимптотиче-
ское разложение вида  
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причем в нулевом приближении имеют место следующие определя-

ющие соотношения вязкоупругости *(0) 4 * *(0)( , )  σ C ξ ε . 

Подставляя разложения (9) в уравнения системы (1) и собирая в 
каждом уравнении члены при одинаковых степенях малого парамет-
ра  , получим из условия равенства нулю членов при наименьших 
степенях параметра   следующую задачу вязкоупругости на ячейке 
периодичности: 
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Здесь *(0) *(1)[ ] 0;  [ ] 0        σ n u  —  условия периодичности функ-

ций на границах ячейки периодичности; *(1) 0 u  — условие нор-

мировки. Формальное решение задачи (11) в силу ее линейности мо-
жет быть записано в виде  

  *(1) 3 *( ) ; u N ξ ε   *(0) 3 3 *1
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2
T

 
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где 3 ( )N ξ  — неизвестная тензор-функция 3-го ранга.  
Подставляя эти выражения в определяющие соотношения систе-

мы (11) и осредняя их по ЯП, получаем искомые эффективные опре-
деляющие соотношения вязкоупругости 

  *(0) 4 * *( ) ,   σ C ε   (13)  

где обозначен эффективный тензор комплексных модулей упругости 
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Обращая соотношения (13), получим 

 * 4 * *(0)( ) ,    ε П σ   (15) 

где 4 *( )П  — эффективный тензор комплексных податливостей. С 
его помощью можно ввести тензор концентрации напряжений в ком-
позите 

 *(0) 4 * *(0) 4 * 3 *( , ) ( , )            σ C ξ ε C ξ N ε 
 

   4 * 3 4 * *(0)( , ) ( )           C ξ N П σ ,  (16) 

или  

  *(0) 4 *(0)( , ) ,    σ B ξ σ   (17) 
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где введен тензор концентрации амплитуд напряжений, который вы-
ражается формулой 

   4 4 * 3 4 *( , ) ( , ) ( ).        B ξ C ξ N П    (18)  

Подставляя выражение (12) в систему (11), получаем уравнение 
для вычисления тензор-функции 3 ( ):N ξ  

    4 * 3( , ) 0,        C ξ N   (19) 

где 3 ( )N ξ  — неизвестная тензор-функция 3-го ранга с компонентами 

kpqN  в декартовой системе координат О .q  

Введем функции ( ),pqU ξ  называемые псевдоперемещениями: 

  1
,

2
kpq kpq kp q kq pU N         (20) 

тогда уравнение (19) на ЯП будет эквивалентно следующей серии из 
девяти уравнений линейной теории вязкоупругости (p, q = 1, 2, 3): 

   4 *( , ) 0.pq      C ξ U   (21) 

 Так как ЯП обладает симметрией относительно плоскостей 0,i   
ее можно разбить на восемь частей и решать задачу теории вязкоупру-
гости только на 1/8 ЯП, как и аналогичные задачи теории упругости [9, 
10]. Уравнения (21) с граничными условиями на координатных плоско-
стях { 0}

i i     и торцевых плоскостях { 1 /2}
i i     для 1/8 ЯП, 

решение которых в среднем реализует состояния чистого растяжения 
или сдвига, представляют собой локальные задачи вязкоупругости .pqL  

Приведем с помощью рисунков граничные условия для задач 
13 31 33, ,L L L (рис. 1), для остальных задач граничные условия получают 

с помощью циклической перестановки индексов. 

 Для решения задач на 
1

8
 ЯП применялся МКЭ, алгоритм которо-

го подробно изложен в [21–24]. Для решения комплексно-значных 
систем линейных алгебраических уравнений (СЛАУ), возникающих в 
МКЭ, был использован метод сопряженных градиентов.  

 Результаты численного моделирования полей концентрации 
амплитуд напряжений. В соответствии с разработанной методикой 
было проведено численное решение трехмерных локальных задач вяз-
коупругости (21) для однонаправленных композитов. Для расчетов 
МКЭ использовалось специализированное программное обеспечение, 
разработанное в НОЦ «СИМПЛЕКС» МГТУ им. Н.Э. Баумана. 
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Рис. 1. Граничные условия для задач L33 и L13 

При численных расчетах использовались следующие значения 
характеристик полимерной матрицы эпоксифенольного типа: mG   

0, 345ГПа; 0,45;m   1;mn   1 1A  ГПа; 1 0,01 с;   1a  20 K;

2 300 K,a   а также характеристики волокон, которые считались чи-

сто упругими: 200ГПа;fE   0,25;f   0.kA   Коэффициент арми-

рования 1D композита был принят равным 0,6. 
На рис. 2 показана КЭ-сетка, использованная для решения ло-

кальных задач вязкоупругости (21). 
Сетка содержала 214 523 конечных 
элемента (КЭ). Использовался тетра-
эдальный четырехузловой КЭ. 

  На рис. 3–8 показаны распре-
деления действительных и мнимых 
компонент Re ( , ),ijklB  ξ  Im ( , )ijklB  ξ  

тензора концентрации напряжений 
4 ( , )B ξ  в ЯП однонаправленного 
ком-позита при различных частотах 
колебаний. Расчеты показывают, что 
действительные компоненты тензора 
концентрации напряжений мало изме-
няются с изменением частоты в отли-
чие от мнимых компонент Im

( , ),ijklB  ξ  которые могут изменять свои значения достаточно суще-

ственно с увеличением частоты   колебаний. Так, максимум компо-
нент Im 1212 ( , ),B  ξ  Im 2211( , )B  ξ  имеет наибольшие значения при мак-
симальной рассматриваемой частоте колебаний, а компонента Im

1313( , )B  ξ  имеет максимум при частоте около 15 Гц. 

Рис. 2. КЭ-сетка, использован-
ная для решения локальных за-
   дач вязкоупругости на 1/8 ЯП 
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Рис. 3. Распределение компоненты Re 1111( , )B  ξ  тензора концентрации 
напряжений 4 ( , )B ξ в ЯП однонаправленного композита при  частотах  
                                          15 (а), 100 (б), 200 (в) Гц 
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Рис. 4. Распределение компоненты Im 1111( , )B  ξ  тензора концентрации 
напряжений 4 ( , )B ξ в ЯП однонаправленного композита при  частотах  
                                            15 (а), 100 (б), 200 (в) Гц 
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Рис. 5. Распределение компоненты Re 1313( , )B  ξ  тензора концентрации 

напряжений 4 ( , )B ξ в ЯП однонаправленного композита при  частотах  
                                        15 (а), 100 (б), 200 (в) Гц 
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Рис. 6. Распределение компоненты Im 1212 ( , )B  ξ  тензора концентрации напря-
жений 4 ( , )B ξ в ЯП однонаправленного композита при частотах 15 (а),  
                                              100 (б), 200 (в) Гц 
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Рис. 7. Распределение компоненты Im 2211( , )B  ξ  тензора концентрации 
напряжений 4 ( , )B ξ в ЯП однонаправленного композита при частотах  
                                             15 (а), 100 (б), 200 (в) Гц  
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Рис. 8. Распределение компоненты Im 1222 ( , )B  ξ  тензора концентрации 

напряжений 4 ( , )B ξ в ЯП однонаправленного композита при частотах  
                                             5 (а), 100 (б), 200 (в) Гц 
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Сравнение результатов численного моделирования эффек-
тивных вязкоупругих характеристик композитов с результатами 
расчета по смесевой модели. Для приближенного вычисления ком-
понент тензоров комплексных модулей упругости 1D композита *

ijklC  

воспользуемся моделью смесевого типа [6, 8]. Согласно этой модели, 
комплексные упругие константы композита можно вычислить по 
формулам, которые подобны аналогичным формулам в линейной 
теории упругости [24]: 

  

 * *
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*
*

* *

* *
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1 ;

1
;
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 (22) 

где *
LE  — продольный комплексный модуль упругости 1D композита 

в направлении ориентации волокон; *
TE  — поперечный комплексный 

модуль упругости нити; *
L  — продольный комплексный коэффици-

ент Пуассона; *
T  — поперечный комплексный коэффициент Пуас-

сона; *
LG  — продольный комплексный модуль сдвига; fE  — модуль 

упругости волокон; f  —продольный и поперечный коэффициенты 

Пуассона моноволокон; *
mE  и *

m  — комплексные модуль упругости 
и коэффициент Пуассона матрицы; f  — относительное объемное 

содержание волокон в композите.  

Поперечный комплексный модуль сдвига 
*

*
*2(1 )

T
T

T

E
G 

 
. Волок-

на полагают упругими, матрицу — вязкоупругой.  
По полученным значениям упругих констант (формулы (23)) со-

ставим компоненты тензора комплексных упругих податливостей 
*0
ijkl  1D композита: 
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(23)

 

Тензор комплексных модулей упругости 1D композита является об-

ратным тензору комплексных упругих податливостей:   1*0 *0
ijkl ijklC


  . 

Далее рассчитывались действительные и мнимые части компонент  

тензора комплексных модулей упругости:  * ( ) Re ( )ijkl ijklC C      

 Im ( ) ,ijklC i   а также вычислялся тангенс угла потерь для каждой 

отдельной компоненты тензора комплексных модулей упругости  

    
 

*
*

*

Im ( )
tg ( )

Re ( )

ijkl
ijkl

ijkl

C
C

C


  


. 

Расчеты проводились в зависимости от частоты колебаний в диа-
пазоне от 1 до 200 Гц.  

На рис. 9–11 приведены сравнительные зависимости тангенса уг-
ла потерь комплексных модулей упругости 

3333
tg ,C  

1313
tg C и 

1111
tg C

1D композита от частоты колебаний, полученные с помощью расче-
тов МКЭ и по смесевым формулам. Имеет место хорошее совпадение 
результатов расчетов для тангенса угла потерь комплексных модулей 
продольного сдвига 

1313
tg ,C  относительное отклонение не превыша-

ет 4 %. Для других величин — тангенса угла потерь комплексного 
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поперечного и продольного модулей упругости 
3333

tg C  и 
1111

tg C  —

различие значений весьма существенное, примерно в 2 раза, хотя ча-
стота, при которой достигаются максимальные значения функций 

3333
tg ( )C   и 

1111
tg ( ),C   рассчитанная с помощью обоих методов, яв-

ляется примерно одинаковой. Учитывая, что МКЭ и метод асимпто-
тических разложений являются в математическом смысле точными 
методами, а численная погрешность МКЭ метода, реализованного в 
программном комплексе МГТУ им. Н.Э. Баумана, весьма невелика 
(не более 5 %), то результаты, полученные с помощью  метода МКЭ 
являются более достоверными. Использование смесевых формул, как 
показано выше, может давать существенную погрешность в расчетах 
диссипативных характеристик композитов.  

Рис. 9. Сравнительные зависимости тангенса угла потерь комплексного мо- 
                 дуля сдвига 1313tg C  1D композита от частоты колебаний: 

 1 — расчет МКЭ; 2 — расчет по смесевым формулам 

Рис. 10. Сравнительные зависимости тангенса угла потерь комплексного про-
дольного модуля упругости 1111tg C 1D композита от частоты колебаний: 

 1 — расчет МКЭ; 2 — расчет по смесевым формулам 
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Рис. 11. Сравнительные зависимости тангенса угла потерь комплексного попе-
речного модуля упругости 3333tg C  1D композита от частоты колебаний: 

 1 — расчет МКЭ;  2 — расчет по смесевым формулам 
 
Выводы. Разработана методика расчета эффективных вязкоупру-

гих характеристик композиционных материалов при установившихся 
циклических колебаниях, основанная на применении теории асимп-
тотического осреднения периодических структур и МКЭ для реше-
ния локальных задач вязкоупругости на ячейке периодичности,  
возникающей в этом методе. Приведены примеры численного моде-
лирования вязкоупругих характеристик однонаправленно-армирован-
ных композитов и решения локальных задач вязкоупругости методом 
КЭ. Проведен сравнительный анализ зависимостей тангенса угла  
потерь комплексных модулей упругости композита от частоты коле-
баний, полученных с помощью расчетов МКЭ и по приближенным 
смесевым формулам. Установлено хорошее совпадение результатов 
расчетов для тангенса угла потерь комплексных модулей продольно-
го сдвига композита, а для других величин — тангенса угла потерь 
комплексного поперечного и продольного модулей упругости; разли-
чие значений весьма существенное, примерно в 2 раза, следователь-
но, использование смесевых формул может давать существенную по-
грешность в расчетах диссипативных характеристик композитов.  

Исследование выполнено при поддержке гранта Российского научного 
фонда (проект №14-19-00847). 
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We propose a method for calculating effective viscoelastic properties of composite mate-
rials under steady-state cyclical vibrations. The method is based on asymptotic averaging 
of periodic structures and finite-element solution of local problems of viscoelasticity in 
periodicity cells of composite materials. We provide examples of numerical simulation of 
viscoelastic properties for composites with unidirectional reinforcement, and of calcula-
tions of complex tensors of stress concentration in a periodicity cell. The paper presents 
a comparative analysis of dependencies of loss tangent of complex composite elasticity 
modulus on vibration frequencies obtained through FEA calculations and rough mixed 
formulae. We show that rough mixed formulae, often used for calculating dissipative 
properties of composite materials, can yield appreciable calculation errors.    

Keywords: composites, viscoelasticity, stable-state vibrations, complex elasticity modu-
lus, unilateral composites, asymptotic averaging method, finite element method, loss tan-
gent, numerical simulation. 
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