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Рассмотрены экстремальные задачи для составляющих собственных спектров ла-
гранжевых динамических систем. Математические модели исследуемых систем 
описаны матрицами, зависящими от параметров. Задачи на собственные значе-
ния, формулируемые для таких систем, в общем случае характеризуются спек-
трами, которые могут содержать кратные собственные значения. Частные 
критерии в экстремальных задачах предполагаются непрерывными, липшицевыми, 
многоэкстремальными и, возможно, не всюду дифференцируемыми функциями. 
Поиск глобальных решений проведен с использованием новых гибридных алгорит-
мов, объединяющих стохастический алгоритм сканирования пространства пере-
менных и детерминированные методы локального поиска. Приведены численные 
примеры решения задач глобальной недифференцируемой минимизации максималь-
ных собственных значений систем. 
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Введение. Проблемам динамики лагранжевых систем в современ-

ной литературе уделено значительное внимание. Так, в работе [1] пред-
ставлен объединенный формализм Лагранжа — Гамильтона для авто-
номных систем высокого порядка. Динамика указанных систем явно 
зависит от ускорений или производных высокого порядка от обобщен-
ных координат. В работе [2] исследованы симметрии и законы сохране-
ния для сингулярных лагранжевых динамических систем. Ряд исследо-
ваний посвящен методам определения лагранжиана (и гамильтониана), 
которые основаны на преобразованиях переменных, допускающих 
представление уравнений движения нелинейной динамической системы 
в стационарной форме [3, 4]. В работе [5] рассмотрены задачи динамики 
плазмы и жидкости в современной постановке. Основные результаты 
получены с использованием уравнения Власова — Больцмана, выве-
денного из модифицированных уравнений движения Эйлера — Ла-
гранжа. Описание стратегии управления лагранжевыми системами 
(объединенными в сеть), обеспечивающей уклонение от столкновений, 
дано в работе [6]. Разработке теории недифференцируемых вложений 
лагранжевых систем посвящена работа [7]; там же представлено не-
дифференцируемое уравнение Эйлера — Лагранжа. Исследования ди-
намических систем включают в себя анализ собственных значений 
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и соответствующих собственных векторов [8]. В работе [9] рассмотрена 
задача о колебаниях двухслойной жидкости, разделенной недеформи-
руемым проницаемым разделителем.  

Проблема стабилизируемости динамических систем исследована 
в работе [10]. Подход основан на оптимизации собственных значений 
и использовании результирующих характеристических свойств оп-
тимальных конфигураций собственных значений системы. Получены 
явные выражения для границ стабилизируемости двумерных систем. 
В работе [11] рассмотрена задача определения характеристик потока 
идеальной несжимаемой жидкости в прямолинейной трубе по спек-
тральным данным. Для математической модели объекта решение 
прямой задачи получено методом гомотопических возмущений. 
Сформулирована обратная задача восстановления характеристик по-
тока, при решении которой использованы гибридные алгоритмы оп-
тимизации.  

Следует отметить, что поиск экстремальных собственных значе-
ний относится к числу актуальных задач динамики систем [12–14]. 
При формулировке соответствующих экстремальных задач необхо-
димо учитывать возможное наличие в спектрах систем кратных соб-
ственных значений, вследствие чего критериальные функции могут 
оказаться невыпуклыми и недифференцируемыми [15, 16]. Некото-
рые методы анализа чувствительности собственных значений и дру-
гих характеристик динамических систем, реализуемые в алгоритмах 
оптимизации, описаны в работах [17, 18]. 

Цель настоящей работы — построение численной методики оп-
тимизационного исследования собственных значений лагранжевых 
динамических систем с использованием гибридных алгоритмов гло-
бальной недифференцируемой оптимизации. 

Постановка экстремальных задач. Предварительно рассматри-
вается динамическая система, состоящая из N  одинаковых элементов 
массы ,em  соединенных между собой (каждый с каждым) с помощью 

пружин жесткостью sc  и, кроме того, связанных с неподвижным ос-

нованием пружинами жесткостью bc  [19]. Лагранжиан системы опре-

делен в виде 

( , ) ( , ) ( ), 
    L q q T q q U q                                      (1) 

где R
 Nq  — вектор обобщенных координат (R N  — N -мерное ев-

клидово пространство); R

 Nq  — вектор обобщенных скоростей; 

( , )
 T q q  — кинетическая энергия системы; ( )


U q  — потенциальная 

энергия системы. Здесь имеет место 
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      

Предполагается, что кинетическая энергия ( , )
 T q q  и потенциаль-

ная энергия ( )


U q  системы принадлежат классу непрерывных функ-
ций с непрерывными частными производными по аргументам. С ис-
пользованием уравнения Эйлера — Лагранжа 

( , ) [ ( , )] 0
 

 
 

     
L d L

q q q q
q dt q

 

(здесь t  — время) для системы с лагранжианом, определенным со-
гласно (1), могут быть получены следующие уравнения движения: 

0, 
 q qA C                                             (2) 

где A  — диагональная матрица, C  — симметрическая теплицева 

матрица. Поиск решения уравнения (2) в виде 
  tq ye  приводит 

к стандартной формулировке проблемы собственных значений 

 
 
y yG                                                (3) 

с неизвестной скалярной величиной 2    и вектором R .
 Ny  

Существенно, что определитель симметрической ( )N N -матрицы 
1/2 1/2G A CA  может быть записан в виде [19] 

1det ( / / ) .  Nb
s e b e

e

c
Nc m c m

m
G  

Из этого следует, что рассматриваемая система имеет единствен-
ное низшее собственное значение 1 /  b ec m  и 1N  алгебраически 

кратных собственных значений ( ) / ,  j s b eNc c m  2,  ...,  .j N  

В общем случае для произвольной лагранжевой системы решение 
задачи на собственные значения (3) или обобщенной проблемы соб-
ственных значений 

( ) 0 

yC A                                            (4) 

предполагает определение собственных пар { , },
i

i y  1,  ...,  ,i N  где 

скаляр i  представляет i -е собственное значение, а 
iy  — соответ-

ствующий ему собственный вектор. Если требуется найти не все, 
а лишь некоторые собственные пары, то, например, задачу (4) назы-
вают ограниченной обобщенной проблемой собственных значений. 
В такой постановке решение задач (3) или (4) может быть получено 
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при анализе систем с достаточно большим числом степеней свободы, 
что требует применения эффективных современных численных ме-
тодов [20]. 

При оптимизации собственных значений лагранжевых систем 
возможны следующие постановки экстремальных задач. Пусть задан 
вектор переменных управления (параметров оптимизации) 


x  и опре-

делены матрица ( )

xG  задачи (3) или матрицы ( ),


xA  ( )


xC  задачи (4). 

Задача максимизации минимального собственного значения min  

матрицы ( ):

xG  требуется найти 

minmax ( ( ))
x

x G


  при ( ) 0,h x 
 

 ( ) 0,g x 
 

 ,

x X               (5) 

где векторы ( )
 
h x  и ( )

 
g x  представляют ограничения, наложенные на 

модель системы, в форме равенств и неравенств соответственно; 

R nX  — область допустимых значений переменных управления; 
n  — число переменных управления. Существенно, что в процессе 
численного решения задачи (5) собственные значения ( ( )),


i xG  

1,  2,  ...,i  могут изменяться, при этом выполняется их автоматиче-
ская перенумерация с упорядочением по возрастанию. Следователь-
но, при наличии в спектре системы кратных собственных значений 
критериальная функция задачи оптимизации является не всюду диф-
ференцируемой. 

Задача минимизации максимального собственного значения max  

матрицы ( ):

xG  требуется найти 

   * min 
 

x
f x f x  при ( ) 0,

 
h x  ( ) 0,

 
g x  .


x X                (6) 

Здесь max( ) ( ( )), 
 

f x xG  *x  — глобальное решение. В задаче (6) 

ограничения на модель системы формулируются аналогично ограни-
чениям задачи (5) максимизации min .  

В некоторых приложениях может потребоваться одновременная 
максимизация min  и минимизация max  симметрической матрицы 

( ),

xG  причем частные критерии находятся в конфликте. Возможна 

следующая формулировка векторной задачи оптимизации собствен-
ных значений: требуется найти 

max minmin{ ( ( )),  ( ( )) }
x

x x G G
 

 при ( ) 0,
 
h x  ( ) 0,

 
g x  .


x X    (7) 

Следует отметить, что в сформулированных задачах оптимизации 
собственных значений, включая векторную задачу (7), в общем слу-
чае частные критерии являются липшицевыми, многоэкстремальны-
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ми и не всюду дифференцируемыми функциями [12]. Указанные 
особенности рассматриваемых экстремальных задач требуют выбора 
специальных методов их решения. К настоящему времени разработа-
но большое число алгоритмов глобальной оптимизации [21, 22]. 
Накопленный опыт приложений демонстрирует, с одной стороны, 
недостаточную эффективность детерминированных методов (суще-
ственно ограничена размерностью задачи), с другой — потребность 
в значительных вычислительных ресурсах при использовании стоха-
стических методов. Этим обусловлена актуальность разработки ги-
бридных алгоритмов глобальной оптимизации [23, 24]. Подобные 
алгоритмы объединяют стохастические алгоритмы сканирования 
пространства переменных и детерминированные процедуры локаль-
ного поиска. Существенно, что для решения векторной задачи (7) 
с многоэкстремальными частными критериями требуется примене-
ние специальных методов многокритериальной глобальной оптими-
зации [25, 26]. Далее рассматривается экстремальная задача (6) в ска-
лярной постановке, для решения которой предложена численная 
методика с использованием гибридных алгоритмов глобальной не-
дифференцируемой оптимизации. 

Без потери общности экстремальную задачу на собственные зна-
чения можно сформулировать как задачу глобальной оптимизации 
при наличии ограничений:  

   *

R
min ,
 

 
 

nx X
f x f x                                     (8) 

где 

  :  0,  ,   
 

iX x D g x i I                             (9) 

 R :  ,  ;    
 n l u

j j jD x x x x j J                        (10) 

 f x  — целевая функция; *x  — глобальное решение;  ig x  — 

функции ограничений задачи, ;i I   1,  ...,   gI m  — конечное мно-

жество индексов; gm  — число функций ограничений; D  — область 

поиска; ,l u
j jx x  — соответственно нижнее и верхнее ограничения на 

переменную ;jx   1,  ..., .J n  

Функции   ,f x    ,ig x  ,i I  задачи (8)–(10) предполагаются не-

прерывными липшицевыми. Кроме того, положим, что действитель-

ная функция : R Rnf  является многоэкстремальной, не всюду 
дифференцируемой и для нее задана вычислительная процедура, поз-
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воляющая определять значения функции в точках допустимой обла-
сти. Необходимо также учесть возможную высокую трудоемкость 
вычисления критериальных функций, для чего могут потребоваться 
значительные вычислительные ресурсы. 

Методы локальной недифференцируемой оптимизации. Ре-
зультирующая эффективность гибридных алгоритмов глобальной оп-
тимизации в значительной степени определяется характеристиками 
вычислительных процедур локального поиска. Ниже представлены 
методы недифференцируемой оптимизации, предназначенные для 
процедур локального поиска в гибридных алгоритмах. Первый метод 
предполагает предварительное построение локальных сглаживающих 
аппроксимаций критериальных функций с последующим использо-
ванием градиентной информации для аппроксимированной функции. 
В качестве второго выбран метод Хука — Дживса (без использования 
производных). 

Рассмотрим задачу (8)–(10), ограничившись поиском локального 
решения. Предварительно исследуется задача поиска минимума дей-

ствительной функции : R R,nf  определенной в виде 

      
R

max  ,   1,  ..., .
 

  
 

n i M
x X

f x f x i I M  

Здесь X  — допустимое множество; предполагается, что все 
функции   ,if x  , Mi I  выпуклы и непрерывно дифференцируемы. 

Задачи, формулируемые в минимаксной форме, относятся к клас-
су задач недифференцируемой оптимизации. Для их решения приме-
няются специальные методы, например, модифицированный метод 
сопряженных градиентов, метод гиперболической сглаживающей 
функции и др. Рассматриваемый ниже подход основан на построении 
сглаживающих аппроксимаций критериальных функций с последу-
ющим применением эффективных методов, разработанных для задач 
дифференцируемой оптимизации. Подход предполагает замену каж-
дой недифференцируемой функции некоторой ее аппроксимацией, 
которая была бы выпуклой и дифференцируемой в области допусти-
мых значений переменных управления. Ниже в качестве процедуры 
локального поиска гибридных алгоритмов рассматривается метод 
гиперболической сглаживающей функции [27]. Применительно к за-
даче недифференцируемой оптимизации подход с использованием 
гиперболического сглаживания основан на введении новой критери-
альной функции 

( , ) max{ 0,  ( )  },


   

M

i
i I

F x t t f x t  
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а также ее аппроксимации в виде 

2 2( ) ( ( ) )
( , ) .

2


    
   

 


M

i i

i I

f x t f x t
x t t  

Здесь 0   — параметр точности; R.t  Следует отметить, что 
функции ( ),


if x  , Mi I  должны быть непрерывно дифференцируе-

мыми; используемый ниже параметр l  определяется числом ограни-
чений. При этом справедлива оценка 

0 ( , ) ( , ) .
2


   
  l
x t F x t  

Далее рассматриваемая экстремальная задача заменяется после-
довательностью задач минимизации функций ( , ( ))

 
k

x f x  и имеет 

место 0 k  при .k  В работе [27] предложен алгоритм реше-

ния указанной последовательности задач и доказана его сходимость. 
При втором подходе для решения задачи локальной минимиза-

ции, как и в работе [23], используется метод Хука — Дживса. Одна 
из его особенностей состоит в том, что при определении нового 
направления поиска учитывается информация, полученная при вы-
числениях на предыдущих итерациях. В методе объединены две фа-
зы: исследующий поиск с циклическим изменением переменных за-
дачи и ускоряющий поиск по образцу. На предварительном 
(инициирующем) шаге алгоритма Хука — Дживса при решении зада-
чи локальной оптимизации выполняются следующие действия: опре-

деляются направления вдоль координат 1,  ..., ;
 

nh h  выбираются ска-

лярный параметр окончания поиска 0,   начальный размер шага 
,    коэффициент уменьшения шага 1;   выбирается начальная 

точка ,


ix  полагается ,
 

i iy x  задается 1 k j  и происходит переход 

к основному шагу, который включает в себя приведенную ниже по-
следовательность частных шагов. 

Шаг 1. Если ( ) ( ),  
 

i i if y h f y  то попытка успешна; положить 

1   
 

i i iy y h  и перейти к шагу 2. Если ( ) ( ),  
 

i i if y h f y  то попыт-

ка неудачна, при этом: если ( ) ( ), 
 

i i if y h f y  то 1   
 

i i iy y h  и 

перейти к шагу 2; если же ( ) ( ), 
 

i i if y h f y  то положить 1 . 
 

i iy y  

Шаг 2. Если ,j n  то задать 1 j j  и повторить шаг 1. Иначе 

перейти к шагу 3, если 1( ) ( ), 
 

n kf y f x  или перейти к шагу 4, если 

1( ) ( ). 
 

n kf y f x  
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Шаг 3. Задать 1 1 
 

k nx y  и 1 1( ).   
   

i k k ky x x x  Заменить k  на 

1,k  положить 1j  и перейти к шагу 1. 

Шаг 4. Если ,    то останов: 


kx  есть решение. Иначе заменить 

  на / 2.  Положить ,
 

i ky x  1 , 
 

k kx x  заменить k  на 1,k  поло-

жить 1j  и повторить шаг 1. 
Гибридные алгоритмы. Разработка и применение гибридных 

методов глобальной оптимизации является актуальным направлени-
ем исследований. Алгоритмы, реализующие указанные методы, поз-
воляют эффективно решать задачи глобальной оптимизации большей 
размерности по сравнению с детерминированными алгоритмами; 
с другой стороны, вычислительная стоимость полученных решений 
значительно ниже, чем при использовании стохастических методов. 
Гибридный алгоритм, относящийся к рассматриваемому здесь клас-
су, объединяет какой-либо стохастический алгоритм исследования 
пространства переменных и детерминированный метод локального 
поиска. Так, стохастический алгоритм столкновения частиц PCA 
(Particle Collision Algorithm) используется при сканировании про-
странства переменных в гибридном алгоритме HJPCA [23].  

Следует отметить, что результирующая эффективность гибрид-
ных алгоритмов глобальной недифференцируемой оптимизации мо-
жет быть повышена за счет совершенствования вычислительных 
процедур как в фазе сканирования пространства, так и в фазе локаль-
ного поиска. В частности, для сканирования пространства перемен-
ных целесообразно применение современного стохастического крат-
ного алгоритма столкновения частиц M-PCA, который относится 
к числу наиболее мощных из известных стохастических алгоритмов 
глобальной оптимизации [28].  

Существенным шагом алгоритма является сравнительная оценка 
качества решения, определяемого текущей и предшествующей кон-
фигурациями системы. Пробное приближение принимается с опреде-
ленной вероятностью, что исключает сходимость к локальному ми-
нимуму при поиске глобального решения. Работа алгоритма M-PCA 
основана на использовании аналогии с физическими процессами аб-
сорбции и рассеяния частиц при ядерных реакциях. В его простей-
шей версии для исследования пространства переменных использует-
ся одна частица: указанная версия алгоритма M-PCA совпадает 
с алгоритмом PCA, интегрированным в гибридный алгоритм HJPCA. 
На начальном шаге выбирается пробное решение (Old_Config), кото-
рое затем модифицируется посредством стохастического возмущения 
(функция Perturbation( )), что позволяет найти новое решение 
(New_Config). С помощью функции Fitness( ) дается сравнительная 
оценка нового и предыдущего решений, на основании которой новое 
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решение может быть принято или отвергнуто. Если новое решение от-
вергнуто, то происходит переход к функции Scattering( ), реализующей 
схему Метрополиса. Для сканирования области, перспективной на ми-
нимум, применяются функции Perturbation( ) и Small_Perturbation( ). 
Новое решение принимается, если оно лучше предыдущего (абсорб-
ция); если найденное решение хуже предыдущего, то происходит пе-
реход в отдаленную область пространства переменных (рассеяние), 
что позволяет преодолевать локальные минимумы.  

В работе [23] приведены результаты сравнения эффективности 
гибридного алгоритма HJPCA и современных, обладающих высоки-
ми характеристиками алгоритмов, реализующих различные метаэв-
ристики. По результатам тестирования (данные получены для ряда 
стандартных эталонных тестовых многомерных функций), установ-
лена более высокая эффективность алгоритма HJPCA. Следователь-
но, гибридный алгоритм HJPCA — один из наиболее мощных совре-
менных алгоритмов глобальной оптимизации.  

Эффективность сканирования пространства переменных при по-
иске глобального решения может быть значительно повышена за счет 
одновременного использования большого числа частиц. Такой подход 
реализует кратный алгоритм M-PCA, ориентированный непосред-
ственно на применение в среде параллельных вычислений. Наилучшее 
решение определяется с учетом данных о всех частицах, участвующих 
в процессе. При выбранном количестве частиц единственным задавае-
мым параметром для алгоритма M-PCA является число итераций. 
Локальный поиск в рассматриваемых гибридных алгоритмах должен 
выполняться с учетом предположения о недифференцируемости кри-
териальной функции. 

В первом гибридном алгоритме M-PCAGHS при локальном по-
иске используется метод гиперболической сглаживающей функции. 
Во втором гибридном алгоритме M-PCAHJ локальная минимизация 
проводится методом Хука — Дживса. В представленном ниже фраг-
менте псевдокода второго гибридного алгоритма его первая (генера-
ция начального решения) и третья (рассеяние) функции полностью 
соответствуют аналогичным функциям стохастического алгоритма 
M-PCA [28]: 

1. Generate an initial solution Old_Config 
Best_Fitness = Fitness (Old_Config) 
Update Blackboard 
For 0n  to # of particles 
For 0n  to # of iterations 
Update Blackboard 
Perturbation ( ) 
  If Fitness (New_Config) > Fitness 

(Old_Config) 
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   If Fitness (New_Config) > Best_Fitness 
    Best_Fitness := Fitness (New_Config) 
   End If 
Old_Config := New_Config 
   Exploration ( ) 
  Else 
   Scattering ( ) 
  End If 
End For 
End For 
2. Exploration ( ) 
 For 0n  to # of iterations 
  Small_Perturbation ( ) 
Local search 
   using Hooke–Jeeves method 
   Check stopping criterion: 
   Find global solution Best Fitness  
   Else continue 
   If Fitness (New_Config) > Best_Fitness 
Best_Fitness := Fitness (New_Config) 
End If 
   Old_Config := New_Config 
   End For 
Return 
3. Scattering ( ) 

1 scattp ( Fitness (New_Config)) / (Best_Fitness) 
 If scattp > random(0, 1) 
  Old_Config := random solution 
 Else 
  Exploration ( ) 
 End If 
Return 
В состав гибридного алгоритма M-PCAHJ входят также стан-

дартные процедуры Perturbation( ) и Small_Perturbation( ) [28]. Его 
можно рассматривать как модификацию алгоритма HJPCA [23], по-
вышающую результирующую вычислительную эффективность за 
счет фазы сканирования пространства переменных при использова-
нии более чем одной частицы. При возрастании числа используемых 
частиц наблюдается сублинейный рост эффективности стохастиче-
ского алгоритма M-PCA [28]. Существенно, что количество вычисле-
ний критериальной функции для фазы локального поиска алгоритма 
M-PCAHJ на порядок (и более) превышает значение аналогичного 
параметра для фазы сканирования пространства переменных. Более 
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высокое качество сканирования, обеспечиваемое кратным алгорит-
мом M-PCA по сравнению с каноническим PCA, уменьшает число 
выполняемых поисков локальных минимумов и, следовательно, об-
щее количество вычислений критериальной функции. Это определяет 
более высокую эффективность гибридного алгоритма M-PCAHJ по 
сравнению с алгоритмом HJPCA. 

Следует отметить, что метод Хука — Дживса, используемый при 
локальном поиске, имеет ряд принципиальных недостатков. Так, 
вследствие нелинейных эффектов алгоритм Хука — Дживса может 
генерировать последовательность исследующих поисков без перехо-
да к ускоряющему поиску по образцу. Выбор более эффективного 
метода для использования в локальной фазе позволяет улучшить ре-
зультирующие характеристики гибридного алгоритма. Соответству-
ющие подходы представлены в работах [29, 30]. 

Численные примеры. Пример 1. Рассматривается динамическая 
система, состоящая из N  одинаковых элементов массы ,em  соеди-
ненных между собой (каждый с каждым) с помощью одинаковых 
пружин жесткости sc  и, кроме того, связанных с неподвижным осно-

ванием пружинами жесткости bc  [19]. Предполагается, что 10,N  

1em  кг, причем 0,1 4 bc  Н/м, 0,1 4 sc  Н/м. Заданный спектр 

системы представлен собственными значениями *
1 1,   * 11, i  

2,  10.i  Требуется выбрать значения ,bc  sc  так, чтобы обеспечить 
совпадение спектра системы с заданным. Здесь переменными управ-
ления являются коэффициенты жесткости пружин: 1 , bx c  2 . sx c  
Элементы диагональной матрицы масс ( )xA  и симметрической теп-
лицевой матрицы жесткости ( )xC  задачи на собственные значения (4), 
расположенные на главных диагоналях указанных матриц, имеют вид: 

11 22 99 1010... ,     ea a a a m  

11 22 99 1010 1 2... ( 1);      c c c c x x N  

при этом каждый внедиагональный элемент матрицы ( )xC  равен 

2( ).x  Требуется найти: 

 
2R

min
 



x X

F x  при ограничениях , l u
i i ix x x  1,  2,i  

где ( )


F x  — критериальная функция, * *
1 1 10 10( )  ( )  ( ) ;     

  
F x x x  

* *
1 10,   — заданные минимальное и максимальное собственные значе-

ния системы (определены при 1 b sc c  Н/м); 1 10( ), ( ) 
 
x x  — мини-

мальное и максимальное собственные значения системы, соответству-
ющие текущему ;


x  0,1l

ix  Н/м, 4u
ix  Н/м, 1,  2.i  
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Следует отметить, что сформулированная скалярная экстремаль-
ная задача эквивалентна задаче минимизации функции max( ) ( ) 

 
f x x  

при условии *
min 1( ) ,  


x  где max 10( ) ( ).  

 
x x  

Приближенное решение получено с использованием гибридного 
алгоритма M-PCAHJ. На рис. 1, 2 показано изменение переменных 
управления 1,x  2x  и критериальных функций ( ),


F x  ( )


f x  при воз-

растании числа итераций в заключительной фазе локального поиска, 
определяющей глобальное решение. 

 

Рис. 1. Изменение переменных управления 1x  (1), 2x  (2) 

с ростом числа итераций 
 

 

Рис. 2. Изменение функций ( )


f x  (1), ( )


F x  (2) 

с ростом числа итераций 
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Для числа итераций 25iterN  найдено: 25
1 0,99727x  Н/м; 

25
2 0,99961x  Н/м; 25 2( ) 0,9375 10 


F x  (что соответствует значе-

нию 25 2( ) 0,10993 10 ). 


f x  Относительная погрешность решения со-
ставляет: при определении переменных управления (максимальная) 

0, 28 x  %; при определении минимума максимального собственно-

го значения системы 
max

0,064   %. 

Пример 2. Рассматриваемая система состоит из трех элементов 

массы ,im  1,  3,i  соединенных между собой пружинами: первый 

и второй элементы соединены пружиной жесткости 1,C  второй и тре-

тий — пружиной жесткости 2 ,C  первый и третий — пружиной жест-

кости 3;C  кроме того, второй элемент связан с неподвижным основа-

нием пружиной жесткости .bC  Задана следующая информация: 

1 3 1 m m  кг; 2 4m  кг; 10,1 2,4 C  Н/м; 20,1 2,4 C  Н/м; 

3 1 25  C C C  Н/м; 8bC  Н/м. Требуется определить значения пе-

ременных управления ,i ix C  1,  2,i  при которых максимальное 

собственное значение системы max ( )

x  достигает минимума.  

Элементы диагональной матрицы масс ( )xA  и симметрической 
матрицы жесткости ( )


xC  задачи на собственные значения (4), распо-

ложенные на главных диагоналях указанных матриц, имеют вид: 

11 1,a m  22 2 ,a m  33 3,a m  11 1 3, c x C  22 1 2 ;   bc x x C  33 c

2 3. x C  Остальные элементы матрицы ( )

xC  определены в виде: 

12 21 1,  c c x  13 31 3,  c c C  23 32 2.  c c x  Требуется найти 

 
2R

min
x X

f x
 



 при ограничениях , l u

i i ix x x  1,  2,i  

3 1 25  C x x  Н/м, 

где max( ) ( ); 
 

f x x  0,1l
ix  Н/м, 2, 4u

ix  Н/м, 1,  2.i  

Приближенное решение получено с использованием гибридного 
алгоритма M-PCAHJ. На рис. 3 показано изменение переменных 
управления 1,x  2 ,x  а также коэффициента жесткости 3( )


C x  при воз-

растании числа итераций в завершающей фазе локального поиска, 
где определяется глобальное решение задачи. 

Для числа итераций 24iterN  найдено: 24
1 2,000024x  Н/м; 

24
2 1,999976x  Н/м; 24

3( ) 4,0


C x  Н/м. Соответствующее изменение 

критериальной функции max( ) ( ) 
 

f x x  показано на рис. 4, на кото-
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ром также представлено изменение функций 1 min 1( ) ( ) ( )   
  

f x x x  и 

2 2( ) ( ), 
 

f x x  причем min 1 2 3 max .          По завершении фазы 

локального поиска имеет место 24( ) 4,000028;


f x  24
1( ) 3,999972;


f x  
24

2 ( ) 1,0.


f x  

 

Рис. 3. Изменение переменных управления 1x  (1), 2x  (2) 

и коэффициента жесткости 3С  (3) с ростом числа итераций 

 

Рис. 4. Изменение функций ( )


f x  (1), 1 ( )


f x  (3), 2 ( )


f x  (2) 

с ростом числа итераций 
 

Итак, сформулированная экстремальная задача решена, при этом 
искомый минимум достигается на кратном собственном значении 

24 24
2 3( ) ( )  
 
x x  с достаточно высокой точностью. 
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Выводы. Рассмотрены экстремальные задачи на собственные 
значения для лагранжевых динамических систем. Предложен подход 
к решению экстремальных задач с использованием гибридных алго-
ритмов глобальной недифференцируемой оптимизации. Исследова-
ние пространства переменных модели проводится стохастическим 
методом, реализуемым кратным алгоритмом столкновения частиц. 
При локальном поиске в гибридном алгоритме M-PCAGHS гради-
ентная информация определяется для сглаживающих аппроксимаций 
не всюду дифференцируемых критериальных функций. Во втором 
гибридном алгоритме M-PCAHJ локальный поиск реализуется без 
использования производных. Решение модельных экстремальных за-
дач получено с достаточной для приложений точностью. 
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Use of hybrid algorithms in extremum eigenproblems 
of Lagrangian dynamical systems 

© V.D. Sulimov, P.M. Shkapov, D.A. Goncharov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The study examines extremum problems for eigen spectra components of Lagrangian dy-
namical systems. Mathematical models of the systems studied are described by the matri-
ces depending on the parameters. The eigenproblems defined for such systems, in gen-
eral, are characterized by a spectrum, which can contain multiple eigenvalues. Subtests 
in extremum problems are assumed to be continuous, Lipschitzian, multiextremum and 
maybe not everywhere differentiable functions. The search for global solutions is con-
ducted using new hybrid algorithms that combine a stochastic algorithm for scanning the 
variables space and deterministic local search methods. The study gives numerical ex-
amples of solving the problems of global nondifferentiable minimization of the maximum 
systems eigenvalues. 
 
Keywords: eigenvalue, algebraic multiplicity, Lipschitz condition, smoothing approxima-
tion, global optimization, Metropolis algorithm, hybrid algorithm. 
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