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МГТУ им. Н.Э. Баумана, г. Москва, 105005, Россия 
 
Разработана многомасштабная модель деформирования многослойных тонких 
пластин из композиционных материалов с уединенными дефектами. Модель осно-
вана на асимптотическом анализе общих трехмерных уравнений механики дефор-
мируемого твердого тела. Общее решение трехмерных уравнений сведено к реше-
нию задач для тонких пластин без дефектов и локальных трехмерных задач 
в окрестности дефекта с условием затухания решения на удалении от дефекта. 
Для расчета многослойных пластин использованы локальные задачи, которые поз-
воляют найти явное решение для всех шести компонент тензора напряжений, 
в области без дефекта. В зоне дефекта напряжения и перемещения представляет 
собой суперпозицию двух решений: полученного на основе двумерного расчета пла-
стин и локальной трехмерной задачи механики. Приведен пример численного конечно 
элементного решения локальной задачи механики для трехслойной композитной пла-
стины с уединенным дефектом в среднем слое. Показано, что влияние дефекта ло-
кализовано в непосредственной его окрестности, а максимум концентрации транс-
версальных напряжений достигается в окрестности вершины дефекта.  
 
Ключевые слова: многомасштабное моделирование, многослойные тонкие плас-
тины, композиты, уединенные дефекты, метод конечного элемента, асимптоти-
ческие разложения. 

 
Введение. Одной из отличительных особенностей современных 

конструкций из композиционных материалов является наличие в них 
значительного числа различных дефектов, часть из которых обуслов-
лена спецификой технологии изготовления (непропиткой локальных 
зон композита связующим, наличием воздушных полостей между сло-
ями композита, а также пор и их агломераций, возникающих при от-
верждении связующего, и др.), а другая часть образуется в процессе 
нагружения композитных конструкций. Расслоения — один из наибо-
лее характерных дефектов в слоистых композитных конструкциях. 
Опасность дефектов заключается в том, что в их окрестности возника-
ет концентрация напряжений, что приводит к снижению расчетной не-
сущей способности конструкции в целом. Особенно важную роль иг-
рает учет дефектов при эксплуатации композитов в экстремальных 
условиях, например при воздействии высоких температур [1–3]. 

Проблеме расчета конструкций из композитов с дефектами по-
священо достаточно большое число работ, отметим лишь некоторые 
из них [4–11]. Однако в основном предложенные методы расчета 
основаны на приближенном анализе напряжений в конструкциях 
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с дефектами, как правило, на допущении о снижении эффективных 
упругих жесткостей конструкций в окрестности дефектов [11, 12].  

Способ, при котором для расчета тонкостенных конструкций 
с дефектами используется точная трехмерная постановка задачи ме-
ханики деформируемого твердого тела (МДТТ), даже при наличии 
современной вычислительной техники практически не применяется 
в инженерной практике из-за необходимости использовать очень 
мелкие сетки и выполнять большие объемы вычислений. Наиболее 
перспективным, по-видимому, является метод, когда при расчете 
бездефектных зон используется двумерная теория тонких пластин и 
оболочек, а в зоне дефекта решается точная трехмерная задача МДТТ 
[13, 14]. Однако вопрос о корректном переносе решения двумерной 
теории в локальную трехмерную задачу остается открытым.  

Целью настоящей работы является применение математически 
обоснованного метода асимптотического осреднения для получения 
задач двух типов: двумерной задачи теории тонких пластин без де-
фектов, полученной с помощью асимптотической теории [14, 15] 
и локальной трехмерной задачи механики для окрестности дефекта 
в конструкции, а также численная реализация предложенного метода 
и его тестирование.  

Основные допущения. Рассмотрим многослойную пластину 
(рис. 1) постоянной толщины, в которой присутствуют уединенные 
дефекты, расположенные достаточно далеко (в некотором смысле) 
друг о друга. Введем малый параметр / 1  h L  как отношение 
толщины пластины h к характерному размеру всей пластины L 
(например, к ее максимальной длине). Введем также глобальные kx  

и локальные i  координаты:  

/ , k kx x L     / ,  i ix                                      (1) 

где kx  — обычные декартовы координаты, ориентированные таким 

образом, что ось 3Ox  направлена по нормали к внешней и внутрен-

ней плоскостям пластины, а оси 1Ox 2Ox  принадлежат срединной 

плоскости пластины. Обозначим также 3 .    Здесь и далее индексы, 

обозначенные заглавными буквами   ,, , ,I J K L  принимают значения 
1, 2, а индексы , , ,i j k l  — значения 1, 2, 3.  

Полагаем, что существуют два масштаба изменения перемещений 
пластины :ku  один соответствует продольным направлениям 1Ox

2 ,Ox  другой — поперечному направлению 3 .Ox  Координаты kx  и ,i  
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как обычно в методе асимптотического осреднения [11–17], рассмат-
риваются как независимые переменные. Координата 3    по тол-

щине пластины изменяется в диапазоне 30,5 0,5    .  

 

Рис. 1. Тонкая многослойная пластина 
с уединенным дефектом 

 
Рассмотрим трехмерную задачу линейной теории упругости для 

пластины с дефектами. Запишем ее в безразмерном виде [18]:  
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Система (2) состоит из уравнений равновесия, соотношений Ко-
ши, обобщенного закона Гука, граничных условий на внешней и 
внутренней поверхности 3  пластины (их уравнение имеет вид 

3 / 2) x h  и на торцевой поверхности ,T  а также из граничных 

условий на поверхности контакта S  ([ ]iu  — скачок функций) и 

условия на свободной поверхности дефекта d  (рис. 1). 

В уравнениях (2): ij  — компоненты тензора напряжений; ij  — 

компоненты тензора деформаций; /    jj x  — оператор диффе-

ренцирования по декартовым координатам; ju  — компоненты век-

тора перемещений; 3( )ijklC  — компоненты тензора модулей упруго-

сти, который полагается различным для разных слоев пластины, т. е. 

зависящим только от координаты ;  in  — компоненты вектора 

нормали.  
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Никакого специального допущения об анизотропии материалов 
слоев не делаем, т. е. тензоры модулей упругости имеют по 21 неза-
висимой компоненте [18, 19]. 

В системе (2) принято основное допущение [16], заключающееся 
в том, что безразмерное давление p  на внешней и внутренней по-

верхностях пластины имеет порядок малости 3( ),O  т. е. 3 ,  p p  

где p  — безразмерное давление, имеющее порядок малости (1)O . 

Асимптотические разложения для многослойной пластины 
с дефектом. Решение задачи (2) будем искать в виде асимптотиче-
ских разложений по параметру   в виде функций, зависящих от гло-
бальных и локальных координат: 

(0) ( )

1

( ) .




   n n
k Ik k

n

u u x u                                    (3) 

Здесь функции ( ) n
ku  состоят из двух слагаемых 

( ) ( ) ( )ˆ( , ) ( , ),    n n n
I I mk k ku u x u x                             (4) 

одно из которых зависит только от поперечной координаты   и Ix , 

а другое ( )ˆ n
ku  — от всех трех локальных координат ,m  но оно от-

лично от нуля только в некоторой окрестности дефекта (это условие 
будет сформулировано далее).  

Подставим разложения (3) в соотношения Коши в системе (2), 
при этом используем правила дифференцирования функций локаль-
ных координат [13–17] ( / / (1/ ) / ).         j j jx x  Тогда полу-

чим асимптотические разложения для деформаций: 

(0) ( )

1

,




      n n
ij ij ij

n

                                     (5) 

( ) ( ) ( )ˆ( , ) ( , ),       n n n
ij ij I ij I mx x  ,n                       (6) 

где  

( ) ( ) ( )
, ,

1
( ),

2
  n n n

IJ I J J Iu u  ( ) ( ) ( 1)
3 3, /3

1
( ),

2
  n n n

I I Iu u  ( ) ( 1)
33 3/3 , n nu  

( ) ( ) ( ) ( 1) ( 1)
, , / /

1 1
ˆ ˆ ˆ ˆ ˆ( ) ( ),

2 2
     n n n n n

ij i j j i i j j iu u u u  (0)ˆ 0.iu                 (7) 

Здесь обозначены производные по локальной координате 
( ) ( )
/ /  n n

i ji ju u  и глобальным координатам ( ) ( )
, / .   j
n n

i j iu u x  



Многомасштабное моделирование многослойных тонких композитных пластин… 

51 

Подставляя выражение (5) в закон Гука системы (2), получаем 
асимптотическое разложение для напряжений:  

(0) ( )

1

,n n
ij ij ij

n




                                              (8) 

( ) ( ) ( )ˆ( , ) ( , ),      n n n
ij ij I ij I mx x                              (9) 

где  

( ) ( ) ( )
3 3 ,    n n n

IJKL IJkIJ KL kC C    ( ) ( ) ( )
3 3 33 3 ,    n n n

i KL i kKLi kC C            (10) 

( ) ( )ˆˆ .  n n
ij ijkl klC                                         (11) 

Здесь 3 32 ,
IJK IJKC C  33 33,

IJ IJC C  3 3 3 32 ,
i K i KC C  333 333.

i iC C  

Формулировка локальных задач. Подставляя разложения (3), (8) 
в уравнения равновесия и граничные условия системы (2), получим: 
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Здесь учтено, что (0)[ ] 0.ku  Подставим теперь аддитивные пред-

ставления перемещений (4) и напряжений (9) в эту систему уравне-

ний и разделим ее на две части. В одну войдут функции ( ) ( , ),n
Iku x  
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а в другую — функции ( )ˆ ( , ),n
I mku x  ( )ˆ ( , ):n

ij I mx   
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В первую систему (13) для сохранения одномерности всех функ-
ций по   не включаем граничные условия на криволинейной по-

верхности дефекта ,d  поэтому во второй системе (14) появляются 

неоднородные граничные условия на поверхности дефекта ,d  кото-

рые содержат напряжения ( ). n
ij  Удовлетворение систем (13) и (14) 

влечет и удовлетворение системы (12). 
Усилим граничное условие на торцевой поверхности 

( )

1

ˆ: 0,n n
T k

n

u



    заменив его требованием стремления компонент 

вектора перемещений к нулю при удалении от области дефекта 
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u                               (15) 

Приравнивая в системе (13) члены при 1  к нулю, а при осталь-
ных степенях геометрического параметра — к некоторым величинам 

( ) ,n
ih  не зависящим от ,l  получим рекуррентную последователь-

ность локальных задач ,nL  .n  Для этой последовательности за-

дача 0L  имеет вид: 
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Задачи ,nL  n  могут быть записаны в форме: 
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, , 3 3, 33/3 3/3

( ) ( ) ( 1) ( 1)
3 3 33 3

,

,

2 ,  2 , ,

: ; :[ ] 0, [ ] 0, 0.

n n n
iiJ Ji

n n n
i KL i kKLi k

n n n n n n n n
IJ I J J I I I I

n n n n
i n S i ii i

h

C C

u u u u u

p u u

 

 

 
 

  

    

       

            


  (17) 

В этих задачах обозначена операция осреднения по толщине 
пластины 

0,5
(1) (3)

0,5

.i iu u d


                                          (18) 

Аналогично, приравнивая в системе (14) члены при 1  к нулю, 
а при остальных степенях геометрического параметра к некоторым 

величинам ( )ˆ ,n
ih  не зависящим от ,l  получим рекуррентную после-

довательность локальных задач ˆ .nL  

Задача 0L̂  имеет вид: 

 

   

     

     

   

0
/

00

1 10
/ /

0 0 1
3 3 3

0 0

ˆ 0,

ˆˆ ,

ˆ ˆ ˆ2 ,

ˆ ˆ ˆ: 0; :[ ] 0, [ ] 0,

ˆ .:



 

  

  

      

   

ij j

ij ijkl kl

ij i j j i

S ii i

d ij j ij j

C

u u

u

n n

               (19) 

Задачи ˆ ,nL  n  записываются в форме: 

( ) ( 1) ( 1)
,/

( ) ( )

( ) ( ) ( ) ( 1) ( 1)
, , / /

( ) ( ) ( 1)
3 3 3

( ) ( )

( 1)

ˆˆ ˆ ,

ˆˆ ,

ˆ ˆ ˆ ˆ ˆ2 ,

ˆ ˆ ˆ: 0; :[ ] 0, [ ] 0,

ˆ ,

ˆ 0, .

:

 

 






  

  

    

      

   

  

n n n
ij j iij j

n n
ij ijkl kl

n n n n n
ij i j j i i j j i

n n n
S ii i

n n
d ij j ij j

n
Ik

h

C

u u u u

u

n n

u

               (20) 
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Уравнения равновесия в системах (13), (14) после введения 

функций ( ) ( )ˆ,n n
i ih h  принимают вид: 

( )

0

0,




  n n
i

n

h           ( )

0

ˆ 0.




  n n
i

n

h                           (21) 

Решение задач нулевого приближения. Задачи ,nL  n  (16), 

(17) в силу своего построения являются одномерными по локальной 
переменной ,  их решение можно найти аналитически. Решение за-
дачи (16) имеет вид [20]: 

(0)
3 0, i        (0) (0) (0) ,  IJ IJKL KLC                                 (22) 

(0) 1 (0)
3 3 33 ,   

k i i KL KLk C C                                       (23) 

(1) (0) (0)
3, ( ) ,    IKLI KLIu u U         (1) (0)

33 ( ) ,  KL KLu U               (24) 

где  

( ) ,    IKL IKLU Z    3 3( ) ,    KL KLU Z    1
3 3 3 .iKL i s s KLZ C C  (25) 

Здесь 1
3 3

i kC  — матрица компонент, обратная к 3 3.i kC  Также здесь 

обозначены операторы  

       
1/2

,f f f d





         

     
1/2 1/2

.f f d f d
 


 

                               (26) 

Задачи ˆ ,nL  n  (19), (20) являются трехмерными, получение 

их аналитического решения затруднительно. Для их решения исполь-
зуется численные методы. Задача (19) в качестве внешних данных 

(«нагрузок») содержит компоненты вектора напряжений (0)ij jn  на 

поверхности дефекта, который является решением задачи 0.L  В силу 

условия затухания решения задачи (19) на расстояниях, достаточно 
удаленных от поверхности дефекта, можно заменить условие 

(1)ˆ 0,  Iku  условием обнуления компонент вектора перемеще-

ний на границе  d  (некоторой области dV ) достаточно удаленной 

от дефекта: 
(1)ˆ: 0. d ku                                             (27) 



Многомасштабное моделирование многослойных тонких композитных пластин… 

55 

Тогда задача (19) с граничным условием (27) представляет собой 
классическую задачу трехмерной теории упругости, и для ее решения 
может быть применен метод конечного элемента [13, 14]. 

Решение задач последующих приближений. Решение задач ,nL  

n  (17) имеет вид: 

 ( 1) ( )
3 2,3 ( ( 0,5)) ,


         n n

i niJ Ji p p                     (28) 

( 1) ( )
3 33 ,


 n nu  ( 1) ( ) ( )

3 3,2 ,

 
  n n n

I I Iu u  

( 1) ( ) ( ) ( )
3, 3, .

  
      n n n n

IJ IJI J J I  

Здесь введены функции искривлений срединной поверхности 
пластины: 

 ( )
3, .   nn

IJ IJu                                            (29) 

Обращая определяющее соотношение в системе (17), получаем: 

 ( ) 1 ( ) ( )
3 3 333 .    n n n

k s s KL KLsk C C                                (30) 

Подставив это соотношение в первую группу определяющих со-
отношений в системах (16), (17), получаем 

( ) (0) ( ) 1 ( )
3 3 3 3 ,    n n n

IJk k sIJ IJKL KL sC C C                              (31) 

(0) 1
3 3 3 3 . IJKL IJk k s s KLIJKLC C C C C  

Подставляя формулу (30) в третью группу соотношений выраже-
ния (28), находим: 

( 1) ( ) ( ) ( )
,3, ,

  
        n n n n

IJsK IJKLMIJ KL M IJs K              (32) 

1 1
3 3 3 32 ,     IJsK I s KJ J s KIC C   1 1

3 3 3 3 32 .      IJKLM s KL I s MJ J s MIC C C  

Найдем рекуррентное соотношение для функций искривлений 
 1( 1)
3, .   nn

IJ IJu  Подставив второе соотношение системы (28) в фор-

мулу (29), а затем вместо компоненты ( )
33 n  ее представление в форме 

(30), получим 

( 1) 1 ( ) 1 ( )
33 3 33 3 3 ,3, ,  

 
     n n n

s s s KLIJ KL IJs IJC C C                    (33) 
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Записав соотношение (31) для 1n  и подставив в него выраже-

ние (32) для ( 1) n
IJ  и выражение (28) для ( 1)

3 , n
i  получим 

    

( 1) (0) ( ) ( ) ( )
3, ,

1 ( )
3 3 3 3 2, 0,5 .



  




           
 

          
 

n n n n
KLsM KLPQMIJ IJKL KLs M PQ M

n
IJk k s s nsJ J

C

C C p p
    (34) 

Соотношения (28) совместно с формулами (32)–(34) позволяют 

вычислять компоненты ( 1)
3 , n

i  ( 1) , n
IJ  ( 1) ,n

iu  ( 1) , n
IJ  ( 1) n

IJ  по преды-

дущим членам асимптотических разложений этих же компонент.  
Напишем в явном виде начальные члены асимптотических раз-

ложений.  
Если для компонент вектора перемещений использовать соотно-

шения (19), его начальные члены будут иметь следующий вид:  
для перемещений 

      0 0 0
3. ( ) ,      I IKLI KLIu u u U   0 (0)

3 33 ( ) ;    KL KLu u U         (35) 

для изгибных деформаций 

 (0) (0) (0)
, ;


        IJ IJKLMIJ IJ KL M                           (36) 

для межслойных и поперечных деформаций 

   
 

0 (0) 1 (0)
3 3 3

0
, .

i iKL iKL i SKL KL SMKL

iPQ PQKLM KL M

Z Z C C

Z







           


     



               (37) 

Начальные члены асимптотических разложений напряжений 
имеют следующий вид:  

для изгибных и сдвиговых напряжений 

     0 0 0(0) (0) (0)
, ,        

IJ IJKL KL IJKL KL IJKLM KL MC C N                (38) 

 (0) (0) (0) ;
 

  
PQKLM IJSIJKLM IJPQ SMKLN C Z C  

для напряжений межслойного сдвига 

         0 0 0(0) 2 (0) 2 (0)
3 , , , ,

 
          I IMKL KL M IMKL KL M INKLM KL MNC C P    (39) 

  (0) (0) (0) ;
 

  INS PQKLMINKLM SKLM INPQP Z C C  
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для поперечных нормальных напряжений 

       

      

02 (0) 3
33 ,

0 03 (0) 3 (0)
, ,

1 / 2

,

 

 

          

     

MNMNKL KL

MNKL KL MN RNKLM KL MNR

C p p

C S

             (40) 

  (0) (0) (0) .
  

 
   
 

RNS PQKLMRNKLM SMKL RNPQS Z C C  

Осредненные уравнения равновесия пластины без учета де-

фектов. Введем обозначения для усилий ,IJT  моментов IJM  и пере-

резывающих сил IQ  в пластине [20]: 

(0) (1) ...,IJ IJ IJT            

(1) 2 (2)
3 3 ...,I I IQ                                      (41) 

(0) 2 (1) ... .IJ IJ IJM            

Тогда для пластины имеет место классическая система уравнений 
равновесия [20]: 

, 0,IJ JT          , ,J JQ p       , 0,IJ J IM Q                     (42) 

где 2 .   p p  

Подставив выражения (38) для напряжений IJ  в интегралы 

формул (41), получим осредненные определяющие соотношения для 
пластины: 

(0) (0)
, ,     IJ IJKL IJKL KL IJKLMKL KL MT C B K  

(0) (0)
, ,     IJ IJKL IJKL KL IJKLMKL KL MM B D K                  (43) 

где тензоры осредненных  упругих констант пластины  

(0) ,IJKL IJKLC C     (0) ,    IJKL IJKLB C   (0) ,   
IJKLM IJKLMK N     (44) 

2 2 (0) ,    IJKL IJKLD C     2 (0) .    
IJKLM IJKLMK N  

Система уравнений (42), (43) вместе с кинематическими соотно-
шениями 

(0) (0) (0)
, ,

1
 ( ),

2
  IJ I J J Iu u    (0)

3,  KL KLu                           (45) 
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представляет собой систему трех уравнений относительно трех функ-

ций (0) ,Iu  (0)
3u  глобальных переменных .Ix  

Задача об изгибе многослойной композитной пластины с дефек-
том. Рассмотрим в качестве примера задачу об изгибе многослойной 
пластины (допуская несимметричность расположения слоев относи-
тельно срединной поверхности) прямоугольной формы с уединенным 
дефектом под действием равномерно распределенного давления. Пред-
положим, что  1 0,1x  — продольная, а  2 2, 2 ,   x b b b  — по-

перечная глобальная координата пластины. Пластина предполагается 
жестко защемленной на торцах (  — контур, ограничивающий пласти-
ну на срединной поверхности): 

       

   

 

1 1 1 1

2 2

0 0 0 0
1 1 3 3

0 1 0 1

0 0
2 2

( /2) /2

0
3

0,

0,

0.

   

 



   

 






x x x x

x b x b

I

u u u u

u u

u

n

                 (46) 

Слои пластины будем полагать ортотропными, тогда (0) 0,
IJKLMN  

0,IJKLMK  0IJKLMK  [20]. Решение системы (42), (43), (45) в этом 

случае является одномерным и имеет вид: 

       0 2
1 1 1 1 2 1 11 1 1 ,   u x A x x A x x   0

2 0,u       20 2
1 1 13 1 , u x Bq q (47) 

  2
1111 1111 1111 111124 ,  D C B B pC  

  2
1111 1111 1111 1 11116 ,  D C B A pB  

  2
1111 1111 1111 2 11114 .  D C B A pB  

Изгибные, поперечные и напряжения межслойного сдвига, со-
гласно (38)–(40) и (47), при сохранении главных членов в асимптоти-
ческих разложениях вычисляются по формулам: 

    0 0(0)
11 1,1 3,11 ,   IJ IJC u u  

       0 0
3 111 1111,11 3,111

ˆ ˆ ,
 

        
 I I IC u C u                   (48) 
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            0 02 3
33 1111 11111,111 3,1111

ˆ ˆ1/ 2 .  

 
         

 
C u p p C u  

Вектор напряжений на границе дефекта в пластине вычисляется 

по формуле  1 ,ij jn  где  1ij  выражают по формулам (48), выделяя яв-

но члены при 1,  который после этого подставляется в задачу 1̂L  

в выражение (20), координаты Ix  при этом фиксируются, а решение 

ищется в виде функций (1)ˆ ( ), ij l  (2)ˆ ( ).i lu  

Для решения задачи 1̂L  в системе (20) был применен метод конеч-

ного элемента [13, 14]. Программная реализация решения этой трех-
мерной задачи теории упругости была осуществлена с помощью про-
граммной платформы SMCM, разработанной в Научно-образова-
тельном центре «Суперкомпьютерное инженерное моделирование 
и разработка программных комплексов» (НОЦ «СИМПЛЕКС») МГТУ 
им. Н.Э. Баумана. Для визуализации трехмерных полей напряжений 
был использован программный модуль Netgazer, также разработанный 
в НОЦ «СИМПЛЕКС». Некоторые результаты расчетов показаны 
на рис. 2–5. 

 
Рис. 2. Конечно-элементная  сетка, созданная для решения локаль-
ной   задачи   (20)   для   трехслойной   композитной   пластины   (а) 

с уединенным дефектом (б) 
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Рис. 3. Распределение поля продольного напряжения 
(1)
11̂  в локальной за-

даче 1L̂  для трехслойной композитной пластины с уединенным дефектом 

 
 

 

Рис. 4. Распределение поля сдвигового напряжения 
(1)
13̂  в локальной зада-

че 1L̂  для трехслойной композитной пластины с уединенным дефектом 
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Рис. 5. Распределение поля поперечного напряжения 
(1)
33̂  в локальной за-

даче 1L̂  для трехслойной композитной пластины с уединенным дефектом 

 
При численном моделировании была рассмотрена трехслойная 

пластина. Длина пластины 0,84L  м, толщина пластины 0,021h  м, 

а толщина слоев соответствует сетке  3 1/ 2; 1/ 4;   0 1/ 2 ,  A  по 

нормальной координате .  Значения давления на верхней и нижней 

поверхности пластины были следующими: 1 p  и 0,1 p  МПа. 

В качестве материалов слоев № 1, 2, 3 были выбраны ровинговые уг-
лепластики на эпоксидном связующем с различной ориентацией 
стеклянных волокон в слоях. Для слоя № 1 волокна ориентированы 

под углами [0 / 90 ]   к оси 1  в равных соотношениях между собой; 

для слоя № 2 — под углами [ 45 / 90 ]   ; для слоя № 3 — под углами 

[0 / 45 ]   к оси 1,  также в равных соотношениях между собой. Вы-

браны следующие упругие характеристики углеродных моноволокон: 
продольный модуль упругости 200 fE  ГПа, поперечный модуль 

упругости 20fE  ГПа, прочность при продольном растяжении 

2, 2 fT  ГПа, коэффициент Пуассона 0, 25; f  параметры стати-

стического разброса прочности [21]: 0,33, f  0,07,fs  0, 25,fr  

0 3,H  средний угол разориетации моноволокон в нити 1 .  
f  

Матрица в составе композита — Dion, упругие и прочностные 
характеристики матрицы, использованные в расчетах, были следую-
щие: модуль упругости 3mE  ГПа, коэффициент Пуассона 

0,35, m  прочность при растяжении 35mT   МПа, прочность при 
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сжатии 43, mC  МПа прочность при сдвиге 27mS   МПа. Мето-

дика расчета эффективных характеристик ортотропных слоев по ха-
рактеристикам матрицы и волокон изложена в работе [11]. Расчетные 
эффективные упругие константы материалов слоев пластины пред-
ставлены в таблице, где iE  — модули упругости, ijG  — модули 

сдвига, ij  — коэффициенты Пуассона. Слой № 3 соответствует зна-

чению локальной координаты 0,5,    а слой № 1 — 0,5.   Пла-
стина содержала дефект в среднем слое. Форма дефекта выбиралась 
эллипсоидальной. 

Эффективные упругие константы материалов слоев пластины, 
принятые в расчетах 

№ слоя 
1
,E  ГПа 

2
,E  ГПа 

3
,E  ГПа

12
,G  ГПа

13
,G  ГПа

23
,G  ГПа

12
  

13
  

23
  

1 14 14 5,3 1,8 0,75 0,75 0,08 0,14 0,15 

2 7 7 2,7 0,9 0,38 0,38 0,04 0,07 0,08 

3 21 21 8 2,7 1,13 1,13 0,12 0,21 0,23 
 

На рис. 2 показан общий вид области ,dV  представляющей со-

бой часть трехслойной конструкции композитной пластины, которая 

была рассмотрена при решении задачи 1̂L  в системе (20). Также по-

казана конечно-элементная сетка, созданная для решения локальной 

задачи 1̂L  для трехслойной композитной пластины с уединенным де-

фектом. Число конечных элементов в локальной задаче составило 
24 012 519. Конечно-элементная сетка имела сильное сгущение 
в окрестности дефекта. 

На рис. 3–5 показаны распределения полей напряжений (1)
11ˆ ,  

(1)
13ˆ ,  (1)

33̂  (МПа) в локальной задаче для трехслойной композитной 

пластины с уединенным дефектом. Результаты моделирования пока-
зывают, что напряжения в этой задаче сильно локализуются в непо-
средственной окрестности поверхности дефекта. Влияние дефекта 
для всех компонент напряжений сказывается только в среднем слое, 
где располагается дефект, причем на поверхностях раздела слоев 
в непосредственной зоне дефекта его влияние уже практически не 
сказывается.  

Однако максимальные значения концентрации напряжений на 
поверхности дефекта весьма значительны, наибольшие значения 
концентрации этих напряжений реализуются для продольной компо-

ненты тензора напряжений (1)
11̂  (рис. 3) не в вершине дефекта, 

а в зоне наименьшей кривизны его поверхности. Максимальные зна-
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чения поперечной компоненты тензора напряжений (1)
33̂  (рис. 5) реа-

лизуются, наоборот, в вершине дефекта, в зоне наибольшей кривизны 
его поверхности. Именно эти напряжения вызывают раскрытие де-
фекта и его последующее распространение. 

Заключение. Разработана многомасштабная модель деформиро-
вания многослойных тонких пластин из композиционных материалов 
с уединенными дефектами, основанная на асимптотическом анализе 
общих трехмерных уравнений механики деформируемого твердого 
тела.  

С помощью разработанного асимптотического метода общее ре-
шение трехмерных уравнений механики деформируемого твердого 
тела сведено к решению задач для тонких пластин без дефектов 
и локальных трехмерных задач в окрестности дефекта с условием за-
тухания решения на удалении от дефекта.  

Приведен пример численного конечно элементного решения ло-
кальной задачи механики для трехслойной композитной пластины 
с уединенным дефектом в среднем слое. Показано, что влияние де-
фекта на распределение полей напряжений существенно локализова-
но в непосредственной его окрестности. Установлено, что максимум 
концентрации трансверсальных напряжений достигается в окрестно-
сти вершины дефекта. 
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Multiscale modeling of thin multilayer composite plates 
with solitary defects 
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We developed a multiscale model of deformation of thin multilayer composite plates with 
solitary defects. The model is based on the asymptotic analysis of general three-
dimensional equations of deformable solid mechanics. The general solution of three-
dimensional equations is reduced to the solution of two classes of problems: problems for 
thin plates without defects and local three-dimensional problems in the vicinity of the de-
fect with the condition of damping solution at the distance from the defect. A solution of 
local problems is used for averaged problems of the multilayer plates theory, which ena-
bles us to find an explicit solution for all six components of the stress tensor in the field 
without the defect, based on the solution of the averaged two-dimensional problem of the 
plate theory. In the defect area the general solution is a superposition of the two solu-
tions: the one obtained on the basis of the plates theory and local three-dimensional me-
chanics problems. The paper gives an example of a numerical finite element solution of 
the local mechanics problem for the three-layer composite plate with a solitary defect in 
the middle layer. Moreover, findings of the research show that the defect impact is local-
ized in its immediate vicinity and the maximum transverse stress concentration is 
achieved in the vicinity of the defect peak. 
 
Keywords: multiscale modeling, multilayer thin plates, composite, solitary defects, finite 
element method, asymptotic decomposition. 
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