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МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
 
Предложен численно-аналитический алгоритм поиска стационарных орбит кос-
мической станции в окрестности астероида, соответствующих положениям от-
носительного равновесия станции в плоскости, которая образована осями прецес-
сии и собственного вращения астероида, в случае, когда астероид представляется 
близким к динамически симметричному твердым телом, сжатым вдоль оси дина-
мической симметрии. Алгоритм основан на представлении гравитационного по-
тенциала астероида композицией потенциалов двух комплексно-сопряженных то-
чечных масс и состоит из последовательных замен переменных, сводящих задачу 
к аналитическому и численному решению алгебраических уравнений. Приведены 
некоторые факты об эволюции стационарных орбит при изменении угловой ско-
рости прецессии. 
 
Ключевые слова: астероид, стационарная орбита, прецессия, твердое тело, зада-
ча трех тел, точки либрации. 

 
Введение. В ряде планируемых космических миссий к астерои-

дам предполагается, что космическая станция, направленная к асте-
роиду, будет находиться в его окрестности достаточно продолжи-
тельное время, в частности, для увода астероида с «опасной» орбиты 
с помощью постоянно работающего ракетного двигателя (см. [1, 2] 
и др.) или солнечного паруса большой площади, эффективное раз-
вертывание и функционирование которого становятся технически все 
более реальными (идеи алгоритма взяты из работы [3, 4] и др.). 
Однако малые планеты Солнечной системы имеют весьма причудли-
вые формы, следствием чего может являться более сложное, чем 
перманентное вращение, их движение вокруг центра масс. В этом 
случае стационарные орбиты в традиционном для больших планет 
понимании отсутствуют. Тем не менее если астероид можно рас-
сматривать как твердое тело, близкое к динамически симметричному, 
а его движение вокруг центра масс является близким к регулярной 
прецессии, аналогами стационарных орбит можно считать положения 
относительного равновесия космической станции в системе отсчета, 
связанной с осями прецессии и собственного вращения астероида. 
Находясь в таком положении равновесия, космическая станция ока-
зывается подвижной относительно поверхности малой планеты, но 
остается на неизменных расстояниях от полюсов астероида, т. е. то-
чек пересечения оси динамической симметрии с его поверхностью.  
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В случае, когда гравитационный потенциал астероида инвариан-
тен относительно поворотов вокруг оси динамической симметрии, 
такие относительные равновесия возможны только в плоскости, про-
ходящей через центр масс перпендикулярно оси прецессии (тре-
угольные равновесия), и в плоскости, образуемой осями прецессии 
и собственного вращения, совпадающей в данном случае с осью ди-
намической симметрии (компланарные равновесия) [5]. Если астеро-
ид имеет форму тела, сжатого вдоль оси динамической симметрии, 
в соответствии с работами [6–8] его гравитационный потенциал 
можно аппроксимировать композицией потенциалов двух комплекс-
но-сопряженных точечных масс, расположенных на оси динамиче-
ской симметрии, но имеющих вдоль этой оси комплексно-сопряжен- 
ные координаты. В таком случае движение космической станции 
в непосредственной близости к поверхности малой планеты можно 
описать в рамках комплексифицированного варианта Обобщенной 
ограниченной круговой задачи трех тел (ООКЗТТ) [9–11].  

В настоящей работе предложен алгоритм поиска компланарных 
равновесий в наиболее общем варианте комплексифицированной 
ООКЗТТ. В соответствии с принятой терминологией, такие положе-
ния равновесия называют компланарными точками либрации. 

Обозначения и параметры. Предположим, что астероид являет-
ся динамически симметричным твердым телом с центром масс C  
и осью динамической симметрии ,Cz  совершающим регулярную 
прецессию вокруг оси 1Cz  c угловой скоро-
стью ω . Обозначим через ϑ  угол нутации, 
т. е. угол между 1Cz  и Cz  (рис. 1). 

В нашем случае constϑ =  и является од-
ним из параметров задачи. Для определенности 
будем считать 0 / 2.< ϑ < π  Пусть S  — мате-
риальная точка, моделирующая космическую 
станцию, с координатами 1x , 1y , 1z  
в системе осей 1 1 1,Cx y z  вращающуюся вокруг 

1Cz  c угловой скоростью ω  такой, что ,Cz  1Cz  
и 1Cx  всегда находятся в одной плоскости. Бу-
дем искать положения относительного равновесия точки S  в плоско-
сти 1 1,Cx z  т. е. ее компланарные равновесия.  

Будем считать, что твердое тело, представляющее астероид, сжа-
то вдоль оси динамической симметрии, а его гравитационный потен-
циал Π  — композиция гравитационных потенциалов двух мате- 
риальных точек 1O  и 2O  массами ( )1 1 / 2= − νm m i  и массами

( )2 1 / 2= + νm m i  соответственно. Здесь m  — масса астероида; i — 

 

Рис. 1. Система коорди-
нат и ось динамической 

симметрии 
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мнимая единица; ν  — безразмерный параметр, величину которого, 
не ограничивая общности рассуждений, примем неотрицательной. 
Точки 1O  и 2O  должны лежать на оси динамической симметрии и 
иметь вдоль этой оси сопряженные координаты, поэтому примем, что 
в системе координат 1 1 1:Cx y z  

( ) ( ) ( ) ( )
1 2

sin cos sin cos
,0, , ,0, ,

2 2 2 2
l l l l

O O
   −i + ϑ −i + ϑ −i − ϑ −i − ϑ
   
   

i i i i  

где l — некоторое действительное расстояние; λ  — безразмерный 
параметр. Тогда расстояния 1r  и 2r  от точки S до 1O  и 2O  соответ-
ственно могут быть записаны как ( )1,2 ,= ±r l a bi  причем 

( )
2

2 2 2 2 2

2

1sin cos ,
4

2 sin cos ,
2

a b

ab

 i −− = ξ + η + ζ + i ξ ϑ + ζ ϑ +


i = ξ ϑ + ζ ϑ +

                 (1) 

где безразмерные переменные ,ξ  ,η  ζ  определяются равенствами:  

1 ,x l= ξ  1 ,y l= η  1 .z l= ζ  

Условия равновесия и особенности гравитационного потен-
циала. Координаты компланарных точек либрации должны удовле-
творять условиям равновесия точки S во вращающейся системе коор-
динат 1 1 1,Cx y z  которые можно записать в виде: 

ˆ
,∂Πξ =

∂ξ
 0,η =  

ˆ
0,∂Π =

∂ζ
 2 2

ˆ .+ νΠ = −α
+

a b
a b

                   (2) 

Здесь Π̂  — безразмерная версия гравитационного потенциала ;Π  при-
нимающий только положительные значения безразмерный параметр α  
определяется равенством 3 2 ,Gml− −α = ω  где G — гравитационная по-
стоянная. Таким образом, количество и положение стационарных орбит, 
соответствующих компланарным точкам либрации, определяются зна-
чениями четырех безразмерных параметров: ,ϑ  ,ν  ,λ  .α  

Отметим, что потенциал Π  имеет в плоскости 1 1Cx z  целый отре-
зок 1 2A A  особых точек. Концы этого отрезка имеют координаты: 

1 cos sin ,0, sin cos ,
2 2 2 2

 − ϑ − i ϑ ϑ − i ϑ  
l l l lA  
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2 cos sin ,0,
2 2
l lA  ϑ − i ϑ

 sin cos .
2 2
l l − ϑ − i ϑ

 

В сколь угодно малой окрестности точек 1A  и 2A  гравитационный 
потенциал может принимать сколь угодно большие по абсолютной ве-
личине отрицательные значения, поэтому в рассматриваемом случае эти 
точки фактически выполняют ту же функцию, что и центр притяжения 
стандартного точечного потенциала. 

Впервые композиция потенциалов двух комплексно-сопряжен- 
ных масс была использована для аппроксимации гравитационного 
потенциала Земли практически одновременно в работах [6, 8]. При 
этом в работе [6] фактически предполагалось, что потенциал симмет-
ричен относительно центра Земли, что в нашем случае соответствует 

0.λ =  Назовем это случаем Винти. В работе [8] предполагалось, что 
формально вычисленный центр масс системы комплексно-
сопряженных точечных масс совпадает с центром масс Земли, что в 
нашем случае соответствует .λ = ν  Эту ситуацию будем называть по 
первым буквам фамилий авторов — случаем АГД. 

Отметим, что в случае Винти координаты точек 1A  и 2A  всегда 
имеют различные знаки, в то время как в случае АГД в зависимости 
от величины угла нутации ϑ  отрезок 1 2A A  может как пересекать, так 
и не пересекать ось прецессии. 

Замены переменных и вывод основных уравнений. Перейдем 
к новым переменным χ  и ,κ  определяемым по формулам: 

2 ,
sin

ξχ = + i
ϑ

 2 .
cos

ζκ = + λ
ϑ

                                 (3) 

Дифференцируя правые и левые части (1) по ξ  и ζ , получим вы-
ражения для частных производных величин a и b по безразмерным 
координатам. Подставив эти выражения в формулы (2), после неко-
торых преобразований получим: 

3 23 3 0,
1 1

u u uκ − ν κ − ν+ − − =
+ κν + κν

                              (4) 

( )( )( )
( )( )( )

332 2 2 2

2 2

1 1 sin cos ,
8 1 3 1

u

uu

χ − i + κν +  χ ϑ + κ ϑα =   κ − χ + ν −  
              (5) 

где / .u b a=  Поделив равенства (1) друг на друга, получим: 

2 2 21 11 ctg 1 0.u u
u u

    χ − − χ − + ϑ κ − − κ − =        
                (6) 
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Используя наряду с ранее введенными параметры δ  и ,µ  определяе-
мые соотношениями tg 3 ,ν = δ  0 / 6,≤ δ < π  tg 3 ,λ = µ  / 6 / 6,−π < µ < π  
и переменные γ  и ψ  ( tg 3 ,κ = γ  / 6 / 6−π < γ < π  и tg 3 ,= ψu  / 2−π <

/ 2< ψ < π ), запишем корни кубического уравнения (4) в виде 
tg ,= ψj ju  1, 2,  3,  j =  

где 

1 ,
3
πψ = δ − γ −  2 ,ψ = δ − γ  3 ,

3
πψ = δ − γ +                     (7) 

а корни квадратного уравнения (6) — в виде 

( )2 2 2

1,2 1 , 2
cos 3 cos cos 2 3

( ) ctg2
sin 2 sin cos3
γ − ϑ ψ ( γ

χ = ψ = ψ ±
ψ ϑ γ

f             (8) 

(при этом будем считать, что в последнем равенстве индекс 1 соот-
ветствует знаку «минус», а индекс 2 — знаку «плюс»).  

Пусть ( ) ,kj k jfχ = ψ  1, 2,  k =  1, 2,  3.  j =  Подставляя в правую часть 

формулы (5) величины kjχ  вместо χ  и выражения ju  вместо ,u  по-
сле очевидных преобразований получим шесть выражений параметра 
α  через переменную γ  и другие параметры задачи, которые могут 
быть представлены как: 

( ) ( )
( ) ( )

3
2 2 21 1

1 3
1

sin tg 3 cos1 cos3 ,
8 ( tg 3 ) tg / 3cos3 cos / 3

 χ − i χ ϑ ( γ ϑδα = α γ = −  χ − γ δ − γ − πγ δ − γ − π  
k k

k
k

 

( ) ( )
( ) ( )

3
2 2 22 2

2 3
2

sin tg 3 cos1 cos3 ,
8 ( tg 3 ) tgcos3 cos

 χ − i χ ϑ ( γ ϑδα = α γ =  χ − γ δ − γγ δ − γ  
k k

k
k

 

( ) ( )
( ) ( )

3
2 2 23 3

3 3
3

sin tg 3 cos1 cos3 ,
8 ( tg 3 ) tg / 3cos3 cos / 3

 χ − i χ ϑ ( γ ϑδα = α γ = −  χ − γ δ − γ (π γ δ − γ (π   
k k

k
k

 

где 1, 2.  k =  
Определение количества и координат компланарных равно-

весий. Количество компланарных равновесий совпадает с общим 
числом решений совокупности (9), рассматриваемой как набор урав-
нений относительно γ  на интервале  (  66, // )−π π  при фиксирован-
ных значениях параметров рассматриваемой задачи. Множество та-
ких решений можно интерпретировать как набор абсцисс точек 
пересечения графиков функций ( ),kjα γ  построенных в плоскости 
( , )  γ α  при фиксированных значениях ,δ  и ϑ  с прямой const,α =  
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если / 6 / 6−π < γ < π  и 0.α >  Такой набор в одной из наиболее ти-
пичных ситуаций изображен на рис. 2 (точки 1L – 4 ),L  на котором 

1 /12 / 6,γ = −π − δ  2 / 6,γ = δ − π  3 /12 / 2.γ = π − δ  

 

Рис. 2. Типичные графики функций ( )kjα γ  

 
Можно показать, что особенности графиков функций ( )kjα γ  

таковы, что минимально возможное число точек пересечения равно 
четырем. Однако в отдельных сравнительно редких ситуациях неко-
торые из функций ( )kjα γ  оказываются немонотонными, и тогда ко-
личество пересечений возрастает. 

Для определения координат каждого из компланарных равновесий 
сначала необходимо численно решить соответствующее уравнение 

( ),kjα = α γ  далее, подставив его корень (корни) в соответствующее из 
равенств (7), определить значение (или значения) величины .jψ  После 
этого, подставив их в качестве аргументов в выражение для функции 

kf  (см. (8)), определить значение переменной χ  и с учетом равенства 
tg 3κ = γ  из формул (3) вычислить координаты ξ  и .ζ  
Эволюция стационарных орбит при изменении угловой ско-

рости прецессии. Диаграммы типа изображенной на рис. 2 позволя-
ют определить пути эволюции компланарных равновесий при возрас-
тании угловой скорости прецессии. Для этого достаточно проследить 
изменение значений переменной ,γ  соответствующих пересечениям 
с прямой constα =  при изменении значения параметра α  от беско-
нечности до нуля.  

Анализ показывает, что в случае Винти вследствие симметрии 
потенциала компланарные точки либрации перемещаются либо из 
бесконечности в одну из точек 1,2 ,A  либо между осями прецессии 
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и динамической симметрии, либо в окрестности отрезка 2.CA  В слу-
чае АГД, кроме указанных, существуют и другие варианты такой 
эволюции. Так, в ситуации, изображенной на рис. 2, точка либрации, 
соответствующая 1,L  перемещается от оси динамической симметрии 
к особой точке 2 ,A  а точка, соответствующая 3,L  — от оси динами-
ческой симметрии к одной из внутренних точек отрезка 1 2.A A  Воз-
можен и такой путь эволюции, как перемещение из бесконечности к 
оси прецессии. 

Заключение. Изложенное выше позволяет заключить, что при 
использовании специальных переменных, алгоритм поиска стацио-
нарных орбит космической станции около прецессирующего дина-
мически симметричного астероида сжатой формы сводится к числен-
ному поиску корней алгебраических уравнений от одной переменной. 
Этот же алгоритм позволяет проследить эволюцию стационарных 
орбит при изменении угловой скорости прецессии астероида.  
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Modelling the search for stationary space station orbits 
in the vicinity of an oblate-shaped asteroid 

© A.V. Rodnikov 
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We suggest a numerical and analytical algorithm of searching for stationary space sta-
tion orbits in the vicinity of an oblate asteroid, when these orbits correspond to relative 
equilibrium positions of the space station on the plane defined by the asteroid precession 
and proper rotation axes, in the case of the asteroid being represented by a solid body of 
an approximately dynamically symmetric shape, compressed along the axis of dynamic 
symmetry. The algorithm is based on representing the asteroid gravitational potential by 
a composition of two complex conjugate point masses and consists of sequential variable 
substitution steps, reducing the problem to solving algebraic equations analytically and 
numerically. We supply a number of facts concerning evolution of stationary orbits in 
cases of changes in precession angular velocity.  
 
Keywords: asteroid, stationary orbit, precession, solid body, three-body problem, libra-
tion points. 
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