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Свойства одномерного фотонного кристалла  
как отражающей или волноведущей структуры  

в случае H-поляризованного возбуждения 

© В.Ф. Апельцин, Т.Ю. Мозжорина 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной 
волны через периодическую слоистую среду, имеющую структуру одномерного фо-
тонного кристалла. Структура имеет конечное число плоскопараллельных слоев,  
в которой каждая ячейка периодичности состоит из двух слоев с разными действи-
тельными значениями постоянной диэлектрической проницаемости и разными тол-
щинами. Показано, что при некотором дополнительном условии, связывающем угол 
падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости 
слоев, задача решается до конца в явном виде и приводит к простым выражениям для 
отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в 
случае Н-поляризованного поля, в отличие от случая Е-поля-ризации, свойства данной 
среды зависят от отношения толщин слоев, умноженных на их диэлектрические про-
ницаемости (при Е-поляризации  — только от отношения толщин). В результате 
фотонный кристалл в зависимости от частоты поля может вести себя как идеально 
отражающая структура при тех же отношениях толщин слоев, при которых в слу-
чае Е-поляризации он становится волноведущей структурой, и наоборот.  
Произведено сравнение численных расчетов со случаем Е-поляризации. 

Ключевые слова: фотонный кристалл, плоскопараллельный слой, однородный ди-
электрик, плоская волна, идеальный отражатель, волновод без потерь. 

Введение. В работе [1] приведены результаты исследования одно-
мерного фотонного кристалла, состоящего из N ячеек периодичности, 
при его облучении полем Е-поляризованной плоской волны. Под фо-
тонным кристаллом подразумевают среду с периодической структурой, 
состоящей из ячеек постоянных значений диэлектрической проницае-
мости. Такая среда может быть трехмерной [2, 3], двумерной или одно-
мерной. В одномерном случае — это бесконечная последовательность 
плоскопараллельных слоев из однородного диэлектрика, причем каждая 
ячейка периодичности состоит из двух слоев разной толщины и разных 
значений постоянной диэлектрической проницаемости. 

В последние годы исследованию электродинамических и оптиче-
ских свойств таких структур посвящено значительное число публи-
каций [2–5]. Если такая среда бесконечна, то она обладает строго 
фиксированными частотными полосами пропускания электромаг-
нитной волны или, наоборот, полосами запирания энергии поля 
внутри структуры. Эти свойства, как следует из ряда работ, являются 
следствием теоремы Блоха и того, что волновое поле удовлетворяет в 
такой структуре условиям Флоке.  
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В случае практического применения этих свойств необходимо, 
разумеется, создавать такие структуры с большим, но конечным чис-
лом ячеек периодичности, для которых эта теория уже не справедли-
ва. Однако и в конечном случае такие структуры должны обладать 
свойствами близкими к бесконечным, если число ячеек достаточно 
велико. Наиболее естественный метод теоретического исследования 
этих свойств подразумевает численные методы математического мо-
делирования [6], что и делается в большинстве работ этого направле-
ния [7, 8].  

В данной работе приведен аналитический подход к решению по-
добной задачи в случае одномерного фотонного кристалла с конечным 
числом слоев N, возбуждаемого H-поляризованной плоской волной. 
Аналогично случаю Е-поляризованного возбуждения, рассмотренного 
в [1], удается выписать явное решение для прошедшего через структу-
ру и отраженного от нее волновых полей, если потребовать выполне-
ния некоторого необременительного дополнительного условия, связы-
вающего диэлектрические проницаемости слоев ячейки периодично-
сти и их толщины. В результате все практически важные физические 
свойства структуры становятся наглядными и обозримыми. 

 Постановка задачи и система уравнений для Фурье-образов 
решения. Пусть в области декартовых координат (y, z) при z  0 рас-
положена многослойная среда с плоскими параллельными границами 
раздела, причем слои имеют периодичность по толщине и значению 
диэлектрической проницаемости . Элемент периодичности является 
двухслойной плоской полосой с толщинами слоев d1 и d2, общей 
толщиной D = d1 + d2 и с диэлектрическими проницаемостями 1 и 2. 
Среда содержит N элементов периодичности. Общее число слоев  —
2N (рис. 1).  

Рис. 1. Одномерный фотонный  кристалл с N слоями 

Структура возбуждается плоской волной  (0) ,u y z  =

=  0 cos sin ,ik y zе      присутствующей в области 0z   выше структу-

ры. Здесь же присутствует поле  0 , ,u y z  отраженное от структуры и

подлежащее определению. В области z ND   присутствует про-
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шедшее поле  2 1 , ,Nu y z  также подлежащее определению. Рассмат-

ривается случай Н-поляризации (единственная компонента магнит-
ного поля, отличная от нуля, ( , )).xH u y z  ) В каждой области по-

стоянства  возбуждаемое поле  , ,ju y z  0, ..., 2 1,j N   удовлетво-

ряет однородному уравнению Гельмгольца: 

 (0) (0)2
0( , ) 0;u y z k u    

2
0 0 0( , ) 0;u y z k u    

2
1 1 1( , ) 0;u y z k u    

2
2 2 2( , ) 0;u y z k u   ;;; (1)

2
3 1 3( , ) 0;u y z k u  

2
4 2 4( , ) 0;u y z k u  

…………………………. 

2
2 1 1 2 1( , ) 0;N Nu y z k u   

2
2 2 2( , ) 0;N Nu y z k u    

2
2 1 0 2 1( , ) 0.N Nu y z k u     

 На границах раздела свойств однородных сред ставятся условия 
сшивания значений полей и их производных по z, соответствующие 

случаю Н-поляризации (u j = Нx ): u j = u j+1, 
1

1

.jj

j j

uu

z z







   
  Первая 

группа условий удовлетворяется введением 2N + 1 произвольных не-
известных функций f j (y), подчиненных условиям: 

u(0) ( y, 0) + u0 ( y, 0) = f0 ( y); 

u1 ( y, 0) = f0 ( y); 

u1 ( y, −d1) = f1 ( y); 

u2 ( y, −d1) = f1 ( y); (2)

u2 ( y, −D) = f2 ( y);

u3 ( y, −D) = f2 ( y); 

u3 ( y, −D  ̶ d1) = f3 ( y);

u4 ( y, –2D) = f4 ( y); 
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………………………… 

u2N ( y, – (N – 1) D  ̶  d1) = f2N – 1 (y);  (2) 

u2N (y, – ND) = f2N (y); 

u2N + 1 (y, – ND) = f2N (y). 

Дальнейшее рассмотрение удобно проводить для образов Фурье-
решений в каждом слое. 

Если  —  спектральный параметр преобразования Фурье по y, то 
решения уравнений (1) для образов Uj (, z), в каждом слое запишутся 
в виде 

U0 (, z) = A0 () 0 ( ) ;i ze    

U1 (, z) = A1() 1( )i ze    + B1() 1( ) ;i ze     

U2 (, z) = A2() 2 ( )i ze    + B2() 2 ( ) ;i ze     

U3 (, z) = A3() 1( )i ze    + B3() 1( ) ;i ze     (3) 

U4 (, z) = A4() 2 ( )i ze    + B4() 2 ( ) ;i ze     

…………………………………………………. 

U2N  ̶ 1 (, z) = A2N ̶ 1 () 1( )i ze    + B2N ̶ 1 () 1( ) ;i ze     

U2N (, z) = A2N () 2 ( )i ze    + B2N () 2 ( ) ;i ze     

U2N +1(, z) = B2N +1() 0 ( ) ,i ze    

где 0 () = 2 2
0 ;k    1, 2 () = 2 2

1,2 ,k    а краевые условия (2) для 

образов примут вид: 

U0 (, 0) + 2  ( + k0 cos) = F0 (); 

U1 (, 0) = F0 (); 

U1 (, – d1) = F1(); 

U2 (, – d1) = F1();  

U2 (,  – D) = F2 (); 

U3(, – D) = F2 (); 

U3 (,  – D – d1) = F3 (); 

U4 (,  – D – d1) = F3 (); 
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U4 (,  – 2D) = F4 (); 

……………………………………….. 

U2N (, – (N – 1)D − d1) = F2N  ̶ 1 ();    (4) 

U2N (, −ND) = F2N (); 

U2N + 1 (, −ND) = F2N (), 

где Fj () — образы Фурье-функций f j (y) в (2). 
Используя (3), краевые условия (4) можно разбить на пары урав-

нений, из которых однозначно определяются неизвестные амплитуды 
Aj (), Bj () через функции Fj () (пока также неизвестные): 

A0 () + 2  ( + k0 cos ) = F0 (); 

A1() + B1() = F0 (); 

A1() 1( ) 1i de     + B1() 1 1( )i de   = F1(); 

A2() 2 1( )i de     + B2() 2 1( )i de   = F1 (); 

A2 () 2 ( )i De     + B2 () 2 ( )i De   = F2(); 

A3() 1( )i De     + B3() 1( )i De   = F2 (); 

A3 () 1 1( ) ( )i D de      + B3 () 1 1( ) ( )i D de    = F3();   (5) 

A4 () 2 1( ) ( )i D de      + B4 () 2 1( ) ( )i D de    = F3 (); 

A4 () 2 ( ) 2i De     + B4 () 2 ( ) 2i De   = F4 (); 

A5 () 1( ) 2i De     + B5 () 1( ) 2i De   = F4 (); 

A5 () 1 1( ) (2 )i D de      + B5 () 1 1( ) (2 )i D de    = F5 (); 

……………………………………………………………… 

A2N () 2 1( )[( 1) ]i N D de       + B2N () 2 1( )[( 1) ]i N D de      = F2N – 1 (); 

A2N () 2 ( )i NDe     + B2N () 2 ( )i NDe    = F2N (); 

B2N + 1 () 0 ( )i NDe    = F2N () . 

 Решив эти парные системы и два крайних одинарных уравнения, 
получим общее представление коэффициентов Aj (), Bj () через Fj

() для четных и нечетных значений индекса j: 

A2n + 1() = 1( )i nDe  
1 1( )

2 2 1

1 1

( ) ( )
;

2 sin ( )

i d
n nF e F

i d

 
  

 
  (6) 
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B2n + 1() = 1( )i nDe   
1 1( )

2 1 2

1 1

( ) ( )
,

2 sin ( )

i d
n nF F e

i d

  
   

 
n = 0, …, N – 1; 

A2n () = 2 ( ) ( 1)i n De     
2 2( ) ( ) 1

2 1 2

2 2

( ) ( )
;

2 sin ( )

i D i d
n nF e F e

i d

   
   

 
  (6) 

B2n () = ( ) ( 1)2i n De    
22 1 ( )( )

2 2 1

2 2

( ) ( )
,

2 sin ( )

i Di d
n nF e F e

i d

    
  

 
N = 1, …, N; 

A0 () = F0 () – 2  ( + k0 cos);  B2N + 1() = F2N () 0 ( ) .i NDe     

 Теперь можно выписать единообразные выражения для образов 
Фурье Uj (, z) всех полей (кроме отраженного U0 (, z) и прошедшего 
U2N +1(, z)): 

U2n (, z) = 2 ( ) ( 1)i n De   
( ) ( )2 2 1

2 1 2

2 2

( ) ( )

2 sin ( )

i D i d
n nF e F e

i d

   
   

 
2 ( )i ze   

+ 2 ( ) ( 1)i n De    
2 1 2( ) ( )

2 2 1

2 2

( ) ( )

2 sin ( )

i d i D
n nF e F e

i d

     
  

 
2 ( ) ;i ze     

U2n – 1 (, z) = 1 ( ) ( 1)i n De    1( ) 1
2 2 2 1

1 1

( ) ( )

2 sin ( )

i d
n nF e F

i d

 
   

 
1( )i ze   + 

+ 1( ) ( 1)i n De    
1 1

2 1 2 2

1 1

( )( ) ( )

2 sin ( )
n n

i dF F e

i d
 

    
 

( )1 ,i ze   

 n = 1, …, N. 

Систему уравнений для определения неизвестных Fj () получим, 
используя вторую половину краевых условий на границах слоев. 
Приходим к следующей системе линейных алгебраических уравне-
ний, из которых неоднородно только первое: 

0

0

( )
i
  
 

sin1() d1  1

1
1 1c

( )
(os )n d

 
 

F0() + 1

1

( ) 


F1() = 

= i 0

0

( ) 


2 sin1() d1( + k0 cos); 



Свойства одномерного фотонного кристалла… 

9 

1

1 1 1

( )

sin ( )d

 
  

 F0 ()   1 2

1 1 1 2 2 2

( ) ( )

tg ( ) tg ( )d d

    
       

 F1 () +  

2

2 2 2

( )

sin ( )d

 

  

 F2 () = 0; 

2

2 2 2

( )

sin ( )d

 
  

 F1()  1 2

1 1 1 2 2 2

( ) ( )

tg ( ) tg ( )d d

    
       

 F2 () +  

+ 1

1 1 1

( )

sin ( )d

 
  

 F3 () = 0; 

1

1 1 1

( )

sin ( )d

 
  

 F2 ()  1 2

1 1 1 2 2 2

( ) ( )

tg ( ) tg ( )d d

    
       

 F3 () +    (7)

2

2 2 2

( )

sin ( )d

 

  

 F4 () = 0; 

……………………………………………………………………. 

1

1 1 1

( )

sin ( )d

 
  

 F2N — 2 ()   0 2

0 2 2 2

( ) ( )

tg ( )d

    
     

 F2N – 1() + 

2

2 2 2

( )

sin ( )d

 

  

 F2N () = 0; 

2

2 2 2

( )

sin ( )d

 
  

 F2N — 1 ()  2 0

2 2 2 0

( ) ( )

tg ( )
i

d

    
     

 F2N () = 0. 

 Матрица системы (7) имеет почти регулярную структуру, за ис-
ключением первой и последней строки. Систему (7) можно перепи-
сать в более компактной форме, если поделить все уравнения на эле-
менты главной диагонали. Введя обозначение 

 q() = 1 2

1 1 1 2 2 2

( ) ( )
,

tg ( ) tg ( )d d

    
       

получим 

1
0 1

1
0 1 1 1 1 1

0

0 1 1 0

0
0 1 1 1 1 1

1

( )
( ) ( )

( )sin ( ) ( ) cos ( )

( ) 2 sin ( ) ( cos )
;

( )sin ( ) ( )cos ( )

F F
i d d

i d k

i d d

 
   


        



        



        

 (8) 
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1

1 1 1

( )

( ) sin ( )q d

 
   

 F0 () + F1 () + 2

2 2 2

( )

( ) sin ( )q d

 
   

 F2 () = 0; 

2

2 2 2

( )

( ) sin ( )q d

 
   

 F1() + F2 () + 1

1 1 1

( )

( ) sin ( )q d

 
   

 F3 () = 0; 

1

1 1 1

( )

( ) sin ( )q d

 
   

 F2 () + F3 () + 2

2 2 2

( )

( ) sin ( )q d

 
   

 F4 () = 0; 

1

1 1 1

( )

( ) sin ( )q d

 
   

 F2N — 2 () + F2N – 1 () + (8) 

     + 2

2 2 2

( )

( ) sin ( )q d

 
   

 F2N () = 0; 

2

2 2
0 2 2

0 2 2

( )

( )
( ) sin ( )

tg ( )
i d

d

 
   

        

 F2N – 1() + F2N () = 0. 

 В еще более компактной форме систему (8) можно записать, ес-
ли ввести дополнительные обозначения:  

 A0 = 0 1 1 0

0
0 1 1 1 1 1

1

( ) 2 sin ( ) ( cos )
;

( )sin ( ) ( ) cos ( )

i d k

i d d

        
        


 

p1 = 1

1
0 1 1 1 1 1

0

( )
;

( )sin ( ) ( )cos ( )i d d

 
         


 

 p2 = 1

1 1 1

( )
;

( ) sin ( )q d

 
   

p3 = 2

2 2 2

( )
;

( ) sin ( )q d

 
   

 

p4 = 2

2 2
0 2 2

0 2 2

( )
;

( )
( ) sin ( )

( )
i d

tg d

 
   

        

 

F0 () + p1F1 () = A0; 
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p2 F0 () + F1() + p3 F2 () = 0; 

p3 F1() + F2 () + p2 F3 () = 0; 

p2 F2 () + F3 () + p3 F4() = 0; 

………………………………….. 

p2 F2N — 2 () + F2N — 1 () + p3 F2N () = 0; 

p4 F2N — 1() + F2N () = 0. 

 Таким образом, матрица системы (8) является трехдиагональной, 
порядка 2N + 1 и имеет вид 

1

2 3

3 2

2 3

3 2

2 3

4

1 0 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

0 0 0 1 ... 0

...

0 ... 1

0 ... 0 1

p

p p

p p

p p

p p

p p

p

(9)

 Структура матрицы (9) нерегулярна только из-за наличия в пер-
вой строке элемента p1, а в последней строке — элемента p4 . Детер-
минант D2N+1 этой матрицы можно разложить по паре элементов пер-

вой и затем последней строки. Введем обозначения ( , )3 2
2 1 ,p p

ND 

3 3( , )
2 2 ,p p

ND 
2 2( , )

2 2 ,p p
ND 

2 3( , )
2 3

p p
ND   для регулярных детерминантов соответ-

ствующих порядков, у которых боковые диагонали начинаются с 
элементов p3 ( p2) и заканчиваются элементом p2 ( p3). Тогда  

               D2N +1 = ( , )3 2
2 1

p p
ND   p4 p3 3 3( , )

2 2
p p
ND 

 p1 p2 2 2( , )
2 2

p p
ND 

 + 

+ p1 p2 p3 p4 2 3( , )
2 3 .p p

ND 
(10) 

Прошедшее поле. Из последнего равенства (3) следует выраже-
ние U2N +1(, z) = B2N +1() 0 ( )i ze    для образа Фурье прошедшего  
поля, а с учетом последнего равенства (6) имеем U2N +1(, z) = 
= F2N () 0 ( ) ( ) .i z NDe      При этом F2N () как решение алгебраической 
системы (8) принимает вид 
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F2N () = 

1
2 1ND 

 ()

1 0

2 3

3 2

2 3

3 2

2

4

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
.

0 0 0 1 0

0

0 . . . 1 0

0 . . . 0 0

p A

p p

p p

p p

p p

p

p







 

 

Если раскрыть определитель в числителе по элементам последне-
го столбца, то оставшийся определитель порядка 2N станет опреде-
лителем треугольной матрицы и легко вычисляется в виде (p2 p3) 

N ̶ 1 
p2 p4. Следовательно, F2N () = A0

1
2 1ND

 ()(p2 p3)
N ̶ 1p2 p4. В свою  

очередь,  

       U2N +1(, z) = A0 () 1
2 1ND

 ()(p3)
N – 1 (p2) 

N p4 0 ( ) ( ) .i z NDe         (11) 

 Само прошедшее поле u2N +1(y, z) выписывается через обратное 
преобразование Фурье в виде 

2 1( ),Nu y z 

= 
1

2
0

1
0 2 43 ( )( )

2 1

( ) ( ) ( ) ( )
,

( )

NN
i z ND i y

N

A p p p
e e d

D

 
    



   


  (12) 

и так как A0 = 0 1 1 0
0

0
0 1 1 1 1 1

1

( ) 2 sin ( ) ( cos )

( )sin ( ) ( ) cos ( )

i d k
А

i d d

        


        


содержит 

-функцию, окончательное выражение для прошедшего поля примет 
вид 

u2N +1(y, z) = 

  
 0 cos ( )sin1

0 1 1 2 3 4

0
2 1 0 1 1 1 1 1

1

sin sin ( ) ( ) ( ) ( )

( ) sin sin ( ) ( )cos ( )

i k y z NDN N

N

ik d p p p e

D ik d d

   



     


           

. (13) 
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Здесь p2 = 1

1 1 1

( )
;

( ) sin ( )q d

 
   

 p3 = 2

2 2 2

( )
,

( ) sin ( )q d

 
   

 т. е. прежние 

выражения для этих величин, в которых  заменяется на  k0 cos в 
соответствии с аргументом -функции.  

 Воспользуемся теперь выражением (10) для детерминанта 2 1ND 

() и вынесем из каждой строки каждого из детерминантов правой 

части фактор 
1

,
( )q 

 учитывая, что они содержат лишь члены p2 или 

p3, а также то, что этот фактор не содержат сомножители p1, p4, вхо-
дящие в (10). Получим вместо (10) равенство 

D2N + 1 () = 2 1

1

( )Nq  
3 2( , )

2 1
p p
ND 

 ()  4 3
2 1( )N

p p

q  
 3 3( , )

2 2
p p
ND 

 ()   

– 1 2
2 1( )N

p p

q  
 2 2( , )

2 2
p p
ND 
 () + 1 2 3 4

2 1( )N

p p p p

q  
 

2 3( , )
2 3

p p
ND 

 ().  (14) 

Здесь 3p  = 2

2 2 2

( )
;

sin ( )d

 
   2p  = 1

1 1 1

( )
,

sin ( )d

 
  

 а D  означает, что у 

каждого такого детерминанта на боковых диагоналях присутствуют 
лишь члены вида 2 ,p  3p  (без q() в знаменателе), а на главной диа-

гонали q() (вместо 1). Вынося еще 
2 1

1

( )Nq  
из произведения  

1
3 2( ) ( )N Np p в числителе выражения (13) и заменяя его на

1
3 2( ) ( ) ,N Np p   после сокращения получим равенство 

u2N +1(y, z) = 

  
 01 cos ( )sin

0 1 1 2 43

0
2 1 0 1 1 1 1 1

1

sin sin ( ) ( ) ( ) ( )

( ) sin sin ( ) ( )cos ( )

N i k y z NDN

N

ik d p p p e

D ik d d

    



     


 
          

 


 (15) 

вместо (13) и равенство 

2 1ND 
 ()= 3 2( , )

2 1
p p
ND 

 ()  4 3p p 3 3( , )
2 2

p p
ND 

 ()  

1 2p p  2 2( , )
2 2

p p
ND 

 () + 1 2 3 4p p p p  2 3( , )
2 3

p p
ND 

 () (16)

вместо (10). 
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 Детерминант 2 1ND 
 () можно вычислить в замкнутой форме

лишь при диагональных элементах, равных нулю. Это означает, что 
параметры структуры должны быть выбраны так, чтобы q() = 0, т. е. 
должно быть выполнено равенство 

  1 2

1 1 1 2 2 2

( ) ( )
0.

tg ( ) tg ( )d d

    
        

 (17)

 Здесь 1() = 2 2 2
1 0 cos ;k k    2() = 2 2 2

2 0 cos .k k  Тогда для де-
терминанта имеем  

 () = 3 2( , )
2 1

0 0 0 0 . . . 03
0 0 0 . . . 03 2

0 0 0 . . . 02 3( )
. . .

0 03 2
0 0 02

p p
N

p

p p

p p
D

p p

p

   



 

 

 



2
3p   3 2( , )

2 3
p p
ND   4

3p ( , ) 63 2
32 5

p p
ND p    ( , )3 2

2 7
p p
ND 

 = … (1)k
2
3

kp 3 2( , )
2 (2 1)

p p
N kD  


,  

причем 

3 2( , )
3
p pD  = 

3

3 2

2

0 0

0

0 0

p

p p

p


 


 = 0,  

т. е. 3 2( , )
2 1

p p
ND 

 () = 0. То же самое справедливо и для 2 3( , )
2 3

p p
ND 

 (). Сле-

довательно, формула (16) сокращается до 

2 1ND 
 () =  4 3p p 3 3( , )

2 2
p p
ND 

 ()  1 2p p 2 2( , )
2 2

p p
ND 

 (), (18) 

для двух оставшихся детерминантов получим по индукции 

3 3( , )
2 2

p p
ND 

 () =  2
3p 3 3( , )

2 4
p p
ND 

 = 4
3p 3 3( , )

2 6
p p
ND 

 =  6
3p ( , )3 3

2 8
p p
ND  

2
3( 1) kk p   

3 3( , )
2 2( 1)

p p
N kD  


 = …= (1) 

N  ̶  1
2( 1)
3

Np 
(),  
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так как 3 3( , )
2
p pD 2

3p   . Совершенно аналогично 2 2( , )
2 2

p p
ND 

 () = 

= (1)N  ̶  1
2( 1)
2

Np 
(). Окончательно из равенства (18) следует 

2 1ND 
 () = (1) 

N 2 12 1
4 3 1 2 .NNp p p p      (19) 

 Соответствующее явное выражение для прошедшего поля имеет 
вид 

 2 1( , ) ( 1)N
Nu y z   

 0 cos ( )sin1
0 1 1 2 3 4

2 1 02 1
4 3 1 0 1 1 1 1 12

1

sin sin ( ) ( ) ( ) ( )
.

sin sin ( ) ( )cos ( )

i k y z NDN N

NN

ik d p p p e

p p p p ik d d

   



     


              

 

 
 

Разделив числитель и знаменатель на ( 3 2( ) ( ) ,N Np p  приведем это 
равенство к виду 

2 1( , ) ( 1)N
Nu y z   

 0 cos ( ) sin
0 1 1 2 4

3 2 0
2 4 1 3 0 1 1 1 1 1

12 3

sin sin ( ) ( ) ( )
.

sin sin ( ) ( ) cos ( )

i k y z ND

N N

ik d p p e

p p
p p p p ik d d

p p

       

                          



  
 

(20)

 Заметим, что 

2

3

N
p

p

 
 

 




  2 1 1 2 2

1 1 1 2 2

( ) sin ( )

sin ( ) ( )

N
d d

d d

     
      

2

1

.
N

d

d

 
 
 

Поведение функции 
sin x

x
 на интервале [0,  ] (монотонно убы-

вает от 1 до 0) позволяет утверждать, что либо 3

2

,
p

p




 либо 2

3

p

p




 меньше 

1. Следовательно, при N   знаменатель в (20) стремится к . Вы-
ражение (20) можно привести к более симметричному виду, если 
подставить явные выражения для p1() 3p () и для p4 () 2p (): 

2 1( , ) ( 1)N
Nu y z   
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 0 cos ( ) sin
0

0
0 1 1 1 1 1

31

1 1 2

1
0

0 2 2 2 2 2
22

2 2 3

sin

sin sin ( ) ( ) cos ( )

sin ( )

sin sin ( ) ( )cos ( )
.

sin ( )

i k y z ND

N

N

ik e

ik d d
p

d p

ik d d
p

d p

    



  

                


               








Используя равенство (17) в виде  

2 1()ctg1()d1 = 1 2 ()ctg 2 ()d2,  

приведем его к виду  

2 1( , ) ( 1)N
Nu y z     

 0 cos ( )sin
0

2 3 0 2 3
0 1 1 1

13 2 3 2

sin
.

sin ( )ctg ( )

i k y z ND

N N N N

ik e

p p p p
ik d

p p p p

    


          
                              

   
   

(21)

 Отраженное поле. Из (3) и (5) следует, что  

U0(, z) = A0() 0 ( )i ze   

= F0 () 0 ( )i ze    2 ( + k0 cos ) 0 ( ) .i ze  

Из системы (8) аналогично предыдущему получим 

F0 () =  

0

2 1

( )

( )N

A

D 






3

3 2

2 3

2 3

3 2

2 3

4 (2 )

1 0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

. . .

0 0 1 0 0

0 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0 1
N

p

p p

p p

p p

p p

p p

p









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0

2 1

( )

( )N

A

D 






3

3 2

2 3

2 3

3 2

2 (2 1)

1 0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

. . .

0 0 . . . 0 0

0 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0 1
N

p

p p

p p

p p

p p

p 









0 4 3

2 1

( ) ( ) ( )

( )N

A p p

D 

  




3

3 2

2 3

3 2

2 3

3 (2 2)

1 0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

. . .
.

0 0 . . . 0 0

0 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0 1
N

p

p p

p p

p p

p p

p 







 

 В более короткой записи 

  
3 2 3 3( , ) ( , )

0 0 4 3(2 1) (2 2)
0

2 1

( ) ( ) ( ) ( ) ( ) ( )
( ) ,

( )

p p p p
N N

N

A D A p p D
F

D
 



      
 


 (22) 

т. е.  
3 2

0

( , )
(2 1) ( )

0 0
2 1

( )
( , ) ( )

( )

p p
N i z

N

D
U z A e

D
  




   



3 3

0

( , )
4 3 (2 2) ( )

0
2 1

( ) ( ) ( )
( )

( )

p p
N i z

N

p p D
A e

D
  



  
  


 

0( )
02 ( cos ) .i zk e          (23) 

 Применив к (23) обратное преобразование Фурье и учитывая, 
что  

0 1 1 0
0

0
0 1 1 1 1 1

1

( ) 2 sin ( ) ( cos )
( ) ,

( )sin ( ) ( ) cos ( )

i d k
A

i d d

        
 

        

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получим 

0 ( , )u y z 

3 2 3 3( , ) ( , )
0 1 1 4 3(2 1) (2 2)

0
0 1 1 1 1 1 2 1

1

sin sin ( ) ( ) ( ) ( ) ( )
1

[ sin sin ( ) ( )cos ( ) ] ( )

p p p p
N N

N

ik d D p p D

ik d d D

 



                         
  

0( cos sin ).ik y ze       (24)  

Далее, как и прежде, выносим фактор 
1

( )q 
 из детерминантов и 

сомножителей числителя и знаменателя:  

2 1( )ND    = 2 1

1

( )Nq   2 1( )ND    (формула (14));

3 2( , )
(2 1) ( )

p p
ND    = 

2 1

1

( )Nq  
3 2( , )

(2 1) ( );
p p
ND    

3 3( , )
(2 2) ( )

p p
ND    = 

2 2

1

( )Nq  
3 3( , )

(2 2) ( );
p p
ND  

p3() = 
1

( )q  3p ().  

Тогда 

0 ( , )u y z 

3 2 3 3( , ) ( , )
0 1 1 4 3(2 1) (2 2)

0
0 1 1 1 1 1 2 1

1

sin sin ( ) ( ) ( ) ( ) ( )
1

sin sin ( ) ( )cos ( ) ( )

p p p p
N N

N

ik d D p p D

ik d d D

 



                             

 


 

( cos sin )0 .ik y ze       (25) 

Если q()  0, то 3 2( , )
(2 1) ( )

p p
ND    0, а 3 3( , )

(2 2) ( )
p p
ND    

2( 1)1
3( 1) ( ).NN p      Вместо (25) получим 

0( , )u y z 
2 1 1

0 1 1 4 3

0
0 1 1 1 1 1 2 1

1

sin sin ( ) ( ) ( )( 1)
1

sin sin ( ) ( )cos ( ) ( )

N N

N

ik d p p

ik d d D

 



      
                 



   

0( cos sin ).ik y ze       (26) 
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После подстановки 2 1( )ND   в знаменатель в виде (19) получим

0( , )u y z 

2 1
0 1 1 4 3sin sin ( ) ( ) ( )

1
Nik d p p

ab

       
 


 

0 ( cos sin ).ik y ze      (27) 

где а = 0
0 1 1 1 1 1

1

sin sin ( ) ( )cos ( ) ;ik d d


       


 b = 2 1
4 3( ) Np p  

 2 1
1 2( ) ( ) ( ).Np p      

 Условия обращения в нуль фактора q(). Фактор q(), равен-
ство которого нулю позволяет выписать прошедшее и отраженное 
поля в явном виде, можно представить следующим образом: 

1

1 1 1

( )
( ) 

tg ( )
q

d

 
  

  
2

2 2 2

( )
.

tg ( )d

 
  

(28)

 Обратить в ноль это выражение проще всего, потребовав выпол-
нения равенства 

1 1 2 2 tg ( ) tg ( ) .s a d s a d   (29)

Отсюда следует, что 1()d1 =  (n + 1/2); 2()d2 =  (m + 1/2).  
В более подробной записи: 

2
1 0 1

2
2 0 2

sin ( 1 /2);

sin ( 1/2).

d p n

d p m

      

      
(30) 

 Отметим, что при n = m 2

3

p

p




 = 2 1

1 2

( )
,

( )

  
  

 также, в силу (30), 2 2

1 1

,
d

d




т. е.  

  2 2 1 2 2

1 2 1 13

( )
.

( )

p d

dp

   
 
   




  (31) 

 С учетом этого равенства, а также соотношений (30) выражения 
для прошедшего и отраженного полей примут наиболее простой вид: 

0( cos ( ) sin )

2 1

2 2 1 1

1 1 2 2

( , )  ( 1) ;
i k y z ND

N
N N N

e
u y z

d d
d d

   

  
             

 (32) 
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0

0

2 1
4 3 ( cos sin )

2 1 2 1
4 13 2

( , )

( ) ( )
1 .

( ) ( ) ( ) ( )

N
ik y z

N N

u y z

p p
e

p p p p


   

 



             


 

 (32) 

 Это равенство упрощается до следующего: 

0 ( , )u y z 
2 1

1 2

4 3

1
1

( )
1

( )

N
p p
p p


             




 0 ( cos sin ) .i k y ze   

Так как при выполнении равенств (30), (31) и при n = m 

0 2
4

2 0

( )
;

sin ( 1)
p

nik

  

  

p1 = 0 2
1

1 0

( )
,

sin ( 1)
p

nik

  

  

предыдущее равенство принимает вид 

  0( , )u y z  02 ( cos sin )
2 2

1 1

1
1

.
1

N ik y zed
d

   
  

       

 (33) 

 Численные расчеты. Согласно условиям (30), при m = n = 0 ди-
электрические проницаемости слоев должны составлять: 

2
2

1 0 2 2
1

2
2

2 0 2 2
2

sin ;
4

sin .
4

d

d


    




    



(34)

Тогда  

2 2 2 2
1 2 0 1 2

2 2 2 2
2 2 10 2

4 sin
.

4 sin

d d d

d dd

     


     
  

 При численных расчетах будем рассматривать случай ортого-
нального падения плоской волны: 2.    Кроме того, удобно зада-

вать фактор 2 2 2
0 14 sin ,d    который обозначим через 2 (рис. 2, 3). 
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Рис. 2. Модуль амплитуды отраженной волны в зависимости  
от отношения 1 2d d  при различном числе слоев для случая Е-поляризации 

Рис. 3. Модуль амплитуды прошедшей волны в зависимости  
от отношения 1 2d d  при различном числе слоев для случая Е-поляризации  

На графиках рис. 4 ̶ 15 представлены амплитуды отраженного и 
прошедшего полей для отношения 1 2d d  = 0,5…2,0 при разных N для 
последовательных значений   = 2; ; 2 ;  4 ;  8;  16. При этом 
в начале диапазона при   = 2 (см. рис. 4, 5) для малых значений отно-
шения 1 2d d  амплитуды отраженного и прошедшего полей ведут себя 
так же как в случае Е-поляризации (см. рис. 2, 3). Далее, при   = , 2  
наблюдается переходный режим (см. рис. 6 ̶ 9), когда область полного 
отражения относительно величины 1 2d d  предельно сужается в сторо-
ну ее малых значений. При   = 4  начинает формироваться режим, 
близкий к поведению волноведущей структуры, когда при малых  

1 2d d  практически отсутствует как прошедшее, так и отраженное поле 
(рис. 10–11). При последних значениях   = 8;  16;  этот режим 
полностью устанавливается, причем графики амплитуды отраженного 
поля являются перевернутыми графиками случая Е-поляризации, с 
осью симметрии на уровне 0,5 (см. рис. 12–15). 
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Рис. 4. Расчет при τ = 2π для отраженной волны 

Рис. 5. Расчет при τ = 2π для прошедшей волны 

Рис. 6. Расчет при τ = π для отраженной волны 

Рис. 7. Расчет при τ = π для прошедшей волны 
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Рис. 8. Расчет при τ = π/2 для отраженной волны 

Рис. 9. Расчет при τ = π/2 для прошедшей волны 

Рис. 10. Расчет при τ = π/4 для отраженной волны 

Рис. 11. Расчет при τ = π/4 для прошедшей волны 
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Рис. 12. Расчет при τ = π/8 для отраженной волны 

Рис. 13. Расчет при τ = π/8 для прошедшей волны 

Рис. 14. Расчет при τ = π/16 для отраженной волны 

Рис. 15. Расчет при τ = π/16 для прошедшей волны 
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Выводы. В результате проведенного исследования показано, что 
одномерный конечный фотонный кристалл (с конечным числом ячеек 

периодичности) в зависимости от отношения  1 1 2 2d d   толщин од-

нородных слоев, в случае Н-поляризованного возбуждения (или отно-
шения 1 2 ,d d в случае Е-поляризованного) может вести себя либо как 
почти идеально отражающее зеркало, либо как волноведущая структура 
с ничтожными потерями. Кроме того, при выполнении соотношений 

(30), по мере роста величины   = 0 12 sind    (прежде всего за счет 
увеличения частоты поля) структура ведет себя как отражающая или 
волноведущая противоположно случаю Е-поляризованного возбужде-
ния. Следовательно, можно утверждать, что такая среда может, в част-
ности, выполнять роль поляризатора электромагнитного поля. 
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The paper considers two-dimensional boundary value problem of propagation of plane 
electromagnetic wave through a periodic stratified medium with one-dimensional pho-
tonic crystal structure. The structure contains a finite number of slabs. Each periodicity 
cell consists of two layers with different real values of constant dielectric permittivity and 
different thicknesses. We show that under certain additional condition, which connects 
the angle of incidence of the plane wave, thicknesses of the layers, frequencies and die-
lectric permittivity of the layers, we can solve the problem completely and explicitly, the 
solution leading to simple expressions for both the field reflected from the structure, and 
the field which has passed through it. Herewith in case of H-polarized field, unlike E-
polarization, properties of this medium depend on the ratio of thickness of the layers mul-
tiplied by their dielectric permittivity (with E-polarization they depend on thickness ratio 
only). As a result, depending on the field frequency, photonic crystal can behave as per-
fectly reflecting structure, while with the same ratio of thicknesses of the layers in case of 
E-polarization, it becomes a wave guiding structure, and vice-versa. We have compared 
numerical computations with those for cases of E-polarization. 

Keywords: photonic crystal, slab, uniform dielectric, plane wave, perfect reflector, ideal 
waveguide. 
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