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УДК 551.048 
 
Моделирование влияния оттока в залив Кара-Богаз-Гол 

на плотность распределения вероятности 
уровня Каспийского моря 
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Рассмотрены многолетние колебания уровня Каспийского моря как выходного 
процесса нелинейной системы, обладающей положительной и отрицательными 
обратными связями. Предложена модель Каспийского моря, учитывающая отток 
морской воды в залив Кара-Богаз-Гол. Получена плотность распределения уровня 
моря в виде решения соответствующего уравнения Фоккера — Планка — Колмо-
горова. Показано, что бимодальная плотность распределения вероятности уровня 
моря, отвечающая бессточному Каспию (при отсеченном заливе Кара-Богаз-Гол), 
переходит в одномодальную в случае одновременного действия зависимостей ис-
парения и оттока морской воды в залив Кара-Богаз-Гол от уровня моря. 
 
Ключевые слова: уровень Каспийского моря, плотность распределения вероятно-
сти, уравнение Фоккера — Планка — Колмогорова, нелинейная гидрологическая 
система, бимодальность.  

 
Введение. Изучению вероятностных закономерностей колебаний 

уровня Каспия, крупнейшего в мире озера, посвящено множество ис-
следований, начиная с работы [1]. Расчет характеристик современно-
го и будущего режима Каспия необходим для научного обеспечения 
проектов хозяйственного освоения моря и его побережий [2–4]. Для 
таких расчетов используют математическую модель колебаний уров-
ня Каспийского моря (УКМ), которая по современным представлени-
ям должна отражать нелинейную динамику колебаний УКМ [4–8]. 

Ключевым моментом в изучении многолетних колебаний УКМ 
как стохастического процесса является принятие типа и параметров 
плотности распределения вероятности (ПРВ) уровня. От этой функ-
ции в значительной степени зависит надежность и точность расчетов 
характеристик уровня Каспия в перспективе. 

Каспий чаще всего называют бессточным морем, хотя представ-
ляется более обоснованным отнести его к «полубессточным» озерам 
(термин, использовавшийся В.В. Добровольским). Действительно, до 
1980 г. происходил непрерывный отток воды из Каспия в залив, т. е. 
море было проточным. Во время существования дамбы в проливе, 
соединяющем море и залив (ноябрь 1980 – июль 1992 г.), море было 
практически бессточным. После разрушения дамбы отток в Кара-
Богаз-Гол восстановился, море снова стало проточным. 

Моделирование многолетних колебаний уровня Каспия проводят 
в рамках стационарного приближения, т. е. предполагается, что вы-



А.В. Фролов 

80 

нуждающие процессы (например, суммарный речной приток в море) 
имеют стационарный характер, а морфометрические характеристики 
чаши моря и гидравлические условия оттока морской воды в залив 
Кара-Богаз-Гол полагаются неизменными. 

В данной работе решается задача построения ПРВ УКМ для бес-
сточного и проточного Каспия.  

Основные черты механизма колебаний уровня Каспия. Моде-
лирование многолетних колебаний УКМ представляет собой слож-
ную задачу, для решения которой необходимо корректное описание 
процессов, формирующих основные компоненты водного баланса 
моря (суммарный речной и подземный приток, безвозвратные изъя-
тия из притока, испарение и осадки по акватории, отток из моря). 
Приток, осадки и испарение определяются климатическими процес-
сами [5–8]. Техногенное воздействие на уровенный режим моря осу-
ществляется в основном посредством изъятия воды из речного при-
тока на орошение, для промышленности, на коммунально-бытовые 
цели и т. п. Особо выделим отсечение залива Кара-Богаз-Гол дамбой 
и возобновление оттока из моря в залив после разрушение дамбы, что 
также приводило к существенным техногенным изменениям в вод-
ном балансе моря и залива [4]. 

Гидравлические условия оттока морской воды в Кара-Богаз-Гол 
в течение ХХ в. изменялись четырежды, что каждый раз влияло на ре-
жим колебаний уровня Каспия (рис. 1). До начала 1930-х гг. поперечное 
сечение пролива имело вид, обозначенный 1 на рис. 1, глубина пролива 
была относительно невелика, дно пролива не достигало скальной поро-
ды. В период резкого снижения уровня моря в 1930–1940 гг. происхо-
дило углубление пролива вследствие понижения базиса эрозии [9]. 
В проливе формировались новые гидравлические условия. 

К концу 1940-х гг. установились новое поперечное сечение 2 
и соответствующая зависимость оттока морской воды в залив от 
уровня воды в море, действовавшая до 1980 г., когда отток из моря 
был прекращен вследствие возведения дамбы в проливе. До 1992 г. 

отток воды в залив был практиче-
ски прекращен. В июле 1992 г. пло-
тина в проливе была разрушена, из 
моря в залив хлынул поток морской 
воды, размывший пролив до глуби-
ны залегания скальных пород (при-
мерно –31,0 м в Балтийской систе-
ме высот, далее — БС), при этом 
площадь поперечного сечения про-
лива 3 существенно увеличилась по 
всей длине пролива. 

 
Рис. 1. Схема поперечных сечений 
Si (i = 1, 2, 3) пролива, соединяющего 

Каспий с заливом Кара-Богаз-Гол: 
1 — до 1930 г., 2 — 1948–1980 г., 3 — 
после  1994  г.  и  до настоящего времени 
(в 1980–1992 гг. залив был отделен дамбой) 
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Каспийское море совместно с притоком и остальными составля-
ющими водного баланса естественно рассматривать как некоторую 
гидрологическую систему с входными и выходными процессами. 
Приток в море представляет собой входной процесс. Колебания 
уровня воды в море и функционально зависящий в естественном ре-
жиме [4, 9] отток в залив Кара-Богаз-Гол рассматривают как выход-
ные процессы. Испарение может состоять из двух компонент. Одна 
из них — стохастическая компонента — рассматривается как вход-
ной процесс, другая, детерминистическая, — как выходной процесс, 
будучи функцией уровня моря.  

В общем случае в механизме формирования колебаний УКМ есть 
положительная и отрицательные обратные связи. 

Действие отрицательных обратных связей направлено на демп-
фирование колебаний уровня Каспия, т. е. на возврат отклоненного 
уровня к равновесному состоянию. Отрицательные обратные связи 
обусловлены, во-первых, переменностью площади поверхности моря, 
во-вторых, оттоком морской воды в залив Кара-Богаз-Гол [4, 9–11]. 
Переменность площади поверхности моря действует во всем диапа-
зоне колебаний уровня Каспия. Отток в залив Кара-Богаз-Гол значи-
мо действует как отрицательная обратная связь только в относитель-
но небольшом диапазоне колебаний уровня моря, примерно от 1,0 до 
4,5 м (–30,0…–26,5 м БС). 

Положительная обратная связь направлена на дестабилизацию 
уровня моря (т. е. на отклонение уровня от равновесного состояния) 
и формируется под влиянием зависимостей слоя испарения и площади 
акватории от уровня моря. Впервые необходимость учета зависимости 
испарения от уровня воды в Каспии была отмечена в работе [9].  

Экспериментально зависимость испарения с поверхности Каспия 
от уровня моря была установлена Г.Н. Паниным [12]: в теплый пери-
од (апрель – август) испарение с мелководного Северного Каспия 
намного больше испарения со Среднего и Южного Каспия, причем 
в отдельные месяцы — в разы. Например, в мае слой испарения с Се-
верного Каспия в два-три раза больше, чем соответствующая величи-
на для Среднего и Южного Каспия (приблизительно 100, 35 и 
42 мм/мес, соответственно) [12].  

В работе [13] впервые была предложена модель колебаний уров-
ней бессточных водоемов с учетом зависимости испарения от уровня 
моря. 

Основные уравнения и соотношения. Многолетние колебания 
уровня Каспия описываются уравнением водного баланса моря: 

( ) ( ) ( ) ( , ).
( )

dh t v t v h e t h
dt F h

( −= − −                                 (1) 
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Здесь h — уровень воды в Каспии; t — время (годы); ( )v t+ =  

v v+ += +   — суммарное поступление воды в море (речной и подзем-

ный приток; для краткости будем называть ( ) v t+  просто притоком); 

v +  — среднее притока; v+
  — флуктуации притока относительно сред-

него;  ( )F h  — зависимость площади поверхности моря от уровня h; 

( )v h−  — отток (слой) из Каспия в залив Кара-Богаз-Гол; ( ),e t h  — 
эффективное испарение (испарение минус осадки; далее для кратко-
сти просто испарение) с поверхности моря, равное ( ) ( ), se t h e t= +  

( )det ,e h+  где ( )se t  — стохастическая компонента, а ( )dete h  — де-
терминистическая компонента. Уровень моря отсчитывается от от-
метки –31,0 м БС. Примерно на этой отметке находится дно пролива, 
соединяющего море и залив.  

В качестве моделей ( )v t(
 и ( )se t  используем (см., например, [3, 4]) 

авторегрессионные процессы: 

1
( ) ( ) ( ),v

dv t v t w t
dt

( (= −d(


                                    (2) 

2
( ) ( ) ( ).s

e s
de t e t w t

dt
= −d(                                      (3) 

Здесь –v vlnrγ = , e elnγ = − γ , vr  и er  — коэффициенты автокорреляции 

процессов ( )v t(  и ( )se t , соответственно; ( ) ( )1, 2iw i =  — белые шумы 
с известными математическими ожиданиями ( )iw< >  и ковариацион-

ными функциями ( )
( ) 2( ) ( )i
iR Dτ = δ τ , 1, 2i = , где )

2
(iD  — коэффициен-

ты интенсивности соответствующих белых шумов ( )iw , а ( )δ τ  — 
дельта-функция Дирака. 

Для реального диапазона вариаций УКМ ( )F h  близка к линейной 
[3, 4, 11]: 

( ) ,F h a bh= (                                              (4) 

где 9350 10= ⋅a  м2; 914 10= ⋅b  м. 
Для режима оттока в залив, установившегося после разрушения 

в 1992 г. дамбы в проливе, соединяющем море и залив, зависимость 
( )v h−  между оттоком морской воды в залив Кара-Богаз-Гол от уров-

ня Каспия принимаем в виде монотонно неубывающей функции: 
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( ) ( )arctg ,v h k l h A B−  = − +                                 (5) 

где k, l, A и В — числовые коэффициенты. 
Для детерминистической зависимости испарения с поверхности 

моря от уровня моря ( )dete h  используем нелинейную зависимость, 
аналогичную функции (5): 

( ) ( )det arctg ,e h m n h C D = − +                             (6) 

где m, n, C и D — числовые коэффициенты. Функция (6), в отличие от 
(5), монотонно неубывающая с увеличением h. 

Суммарное расходование воды из моря ( )L h  равно: 

( ) ( ) ( ) ,L h E h V h−= +                                        (7) 

где ( ) ( ) ( ) E h e h F h=  и ( ) ( ) ( )V h v h F h− −=  — объемы испарения и от-
тока в залив Кара-Богаз-Гол, соответственно. 

Уравнение (1) перепишем в виде: 

( ) ( ) ( ) ,
dh t

f h g h v
dt

+= +                                       (8) 

где с учетом уравнений (4)–(6): 

( ) ( ) ( ) ( ) ,vf h e h v h
F h

+
−= − −  ( ) ( )1/ .g h F h=                   (9) 

В данной статье рассмотрен идеальный случай, когда испарение не 
имеет стохастической компоненты, ( ) 0.se t ≡  Случай, когда детерми-

нистическая компонента ( )det 0e t ≡ , подробно исследован в классичес- 
кой работе С.В. Музылева [3]. 

Таким образом, колебания УКМ описывает нелинейная стохасти-
ческая система. Исследованию свойств динамики таких систем 
в настоящее время уделяют большое внимание (см. например [14–20]). 

Заменим модель притока в море в виде марковского процесса (2) 
на гауссовский белый шум с коэффициентом интенсивности [21]: 

( )0
0

4 ,N k d
∞

= τ τ∫                                             (10) 

где ( )k τ  — ковариационная функция процесса (2).  
С учетом формулы (10) применительно к стохастическому уравне-

нию (8), коэффициенты сноса ,( )s h t  и диффузии ,( )k h t  равны [21]: 
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( ) ( ) ( ) ( )0 ,
, , , ,

4
g h tNs h t f h t g h t

h
∂

= +
∂

                        (11) 

( ) ( )20, , ,
2

Nk h t g h t=                                       (12) 

где ( )f h  и ( )g h  определены формулами (9).  
Уравнение Фоккера — Планка — Колмогорова для плотности ве-

роятности ( )p h , отвечающее динамическому уравнению (8), для ста-
ционарного режима и при граничных условиях нулевого потока ве-
роятности имеет вид: 

( ) ( ) ( ) ( )2 0,d k h p h s h p h
dh

  − =                            (13) 

где ( )s h  и ( )k h  имеют вид (11) и (12), соответственно. 
Решение уравнения (13) дается выражением: 

( ) ( )
( )
( )2

0

2exp ,
h

h

f xCp h dx
g h N g x′

 
=  

  
∫                         (14) 

где С — нормировочный коэффициент, определяемый из условия

( )
0

1.p h dh
+∞

=∫  

Решение стационарного уравнения Фоккера — Планка — Колмо-
горова (13) можно также записать в виде [22]: 

( ) ( )
0

2Φ
 exp ,

h
p h C

N
 

= − 
 

                                     (15) 

где ( )Φ h  — вероятностный потенциал, который находят по формуле: 

( ) ( )
( )

( )0
2Φ ln .

2′

 
 = − −    

∫
h

h

f x Nh dx g h
g x

                          (16) 

Интеграл в формуле (16) берется аналитически, однако из-за эко-
номии места здесь не приводится.  

Применение теории к уровню Каспийского моря. Расчеты 
ПРВ УКМ были выполнены для среднего притока в море, равного 
275 км3/год, дисперсия притока принималась равной 2500 (км3/год)2 
в соответствии с данными, приведенными в работе [3]. 

Графики зависимостей (5)–(7) приведены на рис. 2, 3 для коэф-
фициентов 0,03k = −  м/год, l =1,98 м–1, 3,75A =  м, 0,72В =  м/год, 

0,02m =  м/год, 0,03n =  м–1, 7,5C =  м и 0,03D =  м/год. 
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Рис. 2. Зависимость слоев испарения e и отто-

ка в Кара-Богаз-Гол v−  от уровня Каспия h 
Рис. 3. Зависимость объемов потерь 

воды L: 
( ) ( )L h E h= — на испарение; ( )L h =

( ) ( )E h V h−(=  — суммарно на испаре-
ние и отток в Кара-Богаз-Гол; пунктир-
ная  линия  —  объем  среднего  притока 

в Каспий V +  
 

Зависимость оттока в залив Кара-Богаз-Гол от УКМ (см. рис. 1) 
получена с учетом образования новых гидравлических условий в про-
ливе, соединяющем море и залив, после разрушения дамбы в 1992 г. 

Зависимость слоя испарения от УКМ соответствует имеющимся 
натурным данным.  

Отрицательная обратная связь, обусловленная оттоком в залив 
Кара-Богаз-Гол, действует на интервале ( 1h , 2h ) (рис. 2). С подъемом 
уровня моря отток в залив монотонно возрастает до максимальной 
величины, определяемой испаряющей способностью залива, пример-
но 18–22 км3/год.  

Действие положительной обратной связи ограничено интервалом 
отметок уровня ( *,h  **h ), на котором: 

( ) ( ) 0,d a bh e h
dh

 + <                                     (17) 

где *h  и **h  — точки локального максимума и минимума зависимо-
сти ( ),E h  соответственно (рис. 3). Неравенство (17) означает, что при 
подъеме уровня моря от *h  до **h объем испаряемой с поверхности 
моря воды ( ) ( ) ( ) ( ) ( )E h F h e h a bh e h= = (  уменьшается. Увеличение 
глубины моря приводит к уменьшению слоя испарения ( )e h  таким 
образом, что увеличение площади поверхности моря ( )F h  оказыва-
ется недостаточным для увеличения объема ( )E h  испаряемой воды. 
Вне интервала ( *,h  **h ) зависимость ( )E h  действует как отрицатель-
ная обратная связь, т. е. с подъемом уровня объем испаряемой воды 
возрастает: 
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    0d a bh e h
dh

     * **(0, ) ( , ).h h h                         (18) 

Положительная обратная связь в данном случае имеет локальный 
характер, так как действует не во всем диапазоне колебаний уровня, 
но только на интервале ( *,h  **h ).  

Действия положительной и отрицательных обратных связей суще-
ственно влияют на вид плотности распределения вероятности УКМ. 

Плотность распределения вероятности УКМ может принципи-
ально различаться для двух состояний моря: а) бессточного, т. е. 
в условиях отсечения залива Кара-Богаз-Гол, при отсутствии оттока 
морской воды в залив,   0;v t   б) проточного, т. е. с оттоком мор-
ской воды в залив в соответствии с формулой (5).  

Будем предполагать, что в обоих случаях испарение с поверхно-
сти моря удовлетворяет зависимости (6), причем стохастическая 
компонента испарения   0.se t   

Последнее предположение отчасти обосновано малым коэффици-
ентом вариации испарения (по сравнению с этим же коэффициентом 
для притока в море). 

В соответствии с данными о водном балансе Каспия и зависимо-
стями (4)–(6) были получены аналитические выражения для вероят-
ностного потенциала и плотности вероятности ( )p h  УКМ (рис. 4). 

 

  

Рис. 4. Вероятностные потенциалы ПРВ 
уровня: 

1 — для бессточного Каспия; 2 — для про-
точного  Каспия;  U  —  неустойчивый, S —  

устойчивые уровни 

Рис. 5. Плотности распределения веро-
ятности уровня Каспия: 

1 — для бессточного Каспия; 2 — проточно-
го Каспия; 3 — гауссовская ПРВ 

 
С физической точки зрения максимумы плотности вероятности 

( )p h  уровня Каспия соответствуют отметкам уровня, в окрестностях 
которых уровень моря проводит относительно много времени. Ис-
пользуя аналогию с движением частицы по «горному ландшафту», за-
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даваемому потенциалом (12), видим, что максимумы плотности веро-
ятности ( )p h  соответствуют «долинам потенциала» [22]. Минимумы 

( )p h  соответствуют «вершинам потенциала» — отметкам, окрестно-
сти которых уровень относительно быстро покидает.  

В случае бессточного Каспия (т. е. в отсутствие оттока в залив 
Кара-Богаз-Гол) действие нелинейной зависимости объема испарения 
от уровня моря (6) приводит к «ландшафту», описываемому кривой 1 
на рис. 4. Этот ландшафт имеет две долины и одну вершину. Соот-
ветствующая плотность распределения уровня ( )p h  имеет два мак-
симума и один минимум (кривая 1 на рис. 5).  

Ландшафт, соответствующий проточному морю, изображен кри-
вой 2 на рис. 4. Вероятностный потенциал ПРВ уровня проточного 
Каспия имеет только один минимум, следовательно, ПРВ УКМ оказы-
вается одномодальной (одновершинной). Заметим, что в этом случае 
ПРВ УКМ может быть аппроксимирована гауссовым распределением 
(кривая 3 на рис. 5), подробнее эта тема рассмотрена в работе [23]. 

Таким образом, при одновременном действии отрицательной об-
ратной связи, образованной оттоком морской воды в залив Кара-
Богаз-Гол и положительной обратной связи — действием нелиней-
ной зависимости испарения от уровня моря, ПРВ УКМ оказывается 
одномодальной и близкой к гауссовому распределению.  

Полученные модельные аналитические результаты зависимости 
вида ПРВ УКМ от режима оттока морской воды в залив Кара-Богаз-
Гол (наличие или отсутствия оттока — одномодальность или бимо-
дальность ПРВ УКМ, соответственно) естественно проверить сопо-
ставлением с данными наблюдений за уровнем Каспия. Для коррект-
ного сопоставления необходимо чтобы, во-первых, выполнялось 
условие неизменности гидравлических условий в проливе, соединя-
ющем море и залив в течение всего периода наблюдений за уровнем. 
Как уже было отмечено выше, это условие неоднократно наруша-
лось. Другими словами, ряд наблюденных отметок уровня фактиче-
ски нестационарен.  

Во-вторых, даже если игнорировать эту нестационарность, ряд 
наблюдений за уровнем должен быть достаточно длинным для по-
строения статистически достоверной гистограммы УКМ. Коэффици-
ент автокорреляции УКМ 0,98r ≅ , радиус корреляции УКМ равен

1/ 1 0( 5)R r= − ≅ . Высокая автокоррелированность УКМ приводит 
к тому, что ряд зафиксированных отметок уровня эквивалентен N не-
зависимых наблюдений: 

177 3,5,
50

MN
R

= = ≈  
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где М — число наблюдений за уровнем моря на посту в г. Махачкала 
(1837–2014 гг.). Столь малое число независимых наблюдений, как 
известно, недостаточно для построения статистически достоверной 
выборочной гистограммы.  

Учитывая вышесказанное, был применен метод численного (ими-
тационного) моделирования колебаний УКМ. Для этого было ис-
пользовано дискретное уравнение водного баланса: 

( ) ( ) ( )1 det 1 1
1

 ,t
t t t t

t

vh h e h v h
F h

+
−

− − −
−

= + − −                      (19) 

где функции ( )1 ,tF h −  ( )det 1 te h −  и ( )1tv h−
−  определялись зависимо-

стями (4), (5) и (6), соответственно, численные коэффициенты в этих 
зависимостях приведены в начале этого раздела; t — в этом случае 
дискретное время (годы), 0,  1, , .t N= …  

Суммарный приток в море моделировался марковской последо-
вательностью: 

1 ,t v t tv r v w+ +
−= +                                           (20) 

где 0,3vr =  — коэффициент автокорреляции притока; tw  — белый шум 
со средней величиной 192 км3/год и дисперсией 2275 (км3/год)2. Белый 
шум был сгенерирован стандартным датчиком псевдослучайных 
гауссовых чисел. Начальные значения уровня и притока были заданы 
равными 2,5 м (над отметкой –31,0 БС) и 275 км3/год, соответствен-
но. Длина последовательности N годовых величин притока принима-
лась равной 106, что обеспечивало необходимую точность при по-
строении гистограмм уровня Каспия для двух режимов: без оттока 
морской воды в залив Кара-Богаз-Гол и при наличии такого оттока. 
Результаты отражены на рис. 6. 

 

Рис. 6. Гистограммы УКМ по результатам численного моделирования: 
а — для бессточного Каспия; б — для Каспия с оттоком в залив Кара-Богаз-Гол 



Моделирование влияния оттока в залив Кара-Богаз-Гол… 

89 

Результаты численного моделирования подтверждают получен-
ные на основе аналитической модели результаты. При отсутствии 
оттока из Каспия в залив Кара-Богаз-Гол ПРВ УКМ бимодальна, при 
наличии оттока — одномодальна. 

Заключение. Вид плотности распределения вероятности уровня 
Каспия применительно к выбранному варианту водного баланса моря 
существенно зависит от режима оттока морской воды в залив Кара-
Богаз-Гол. Прекращение оттока в залив приводит к режиму колеба-
ний уровня, при котором стационарная плотность распределения 
уровня моря становится бимодальной. В режиме проточного водое-
ма, при оттоке морской воды в залив Кара-Богаз-Гол, плотность рас-
пределения уровня Каспия оказывается одномодальной. 

Работа выполнена при финансовой поддержке РФФИ (проект 
№ 15-05-06160) и РФФИ-РГО (проект № 13-05-41007). 
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Modelling influence of outflow into the Kara-Bogaz-Gol 
Bay on probability density of the Caspian Sea 

level fluctuations 

© А.V. Frolov 
Water Problems Institute of the Russian Academy of Sciences, 

Moscow, 119333, Russia 
 
The paper considers long-term fluctuations of the Caspian Sea level as a nonlinear sys-
tem output with positive and negative feedbacks. The Caspian Sea model with due con-
sideration of an outflow into the Kara-Bogaz-Gol Bay is designed. Density distribution of 
the sea level is obtained as a solution to the corresponding Fokker — Planck — Kolmo-
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gorov equation. The bimodal probability density of the sea level distribution, which meets 
the endorheic Caspian Sea (if you cut off the Kara-Bogaz-Gol Bay), is shown to turn into 
the single-mode probability density in case of simultaneous influence of evaporation and 
seawater outflow into the Kara-Bogaz-Gol Bay on the sea level. 
 
Keywords: the Caspian Sea level, probability density distribution, Fokker — Planck — 
Kolmogorov equation, nonlinear hydrological system, bimodality. 
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