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Модификация метода Польгаузена для расчета 
тепловых потоков на затупленных телах 
© В.П. Котенев, В.Н. Булгаков, Ю.С. Ожгибисова 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
 
Разработана модификация метода Польгаузена, позволяющая быстро и эффек-
тивно получить распределение теплового потока по поверхности затупленных 
тел. Проведены расчеты, их результаты приведены в сравнении с численным ре-
шением задачи в рамках уравнений Навье — Стокса. 
 
Ключевые слова: сверхзвуковой поток, пограничный слой, метод Польгаузена. 

 
Введение. При проектировании современных и перспективных 

летательных аппаратов, предназначенных для сверх- и гиперзвуко-
вых режимов полета, необходимо своевременно и точно определять 
характерные параметры режимов обтекания. 

Сведения об аэродинамических характеристиках и тепловых по-
токах, полученные в результате дорогостоящих экспериментов, не 
всегда соответствуют условиям реального полета. По этой причине 
получение необходимой информации может быть осуществлено по-
средством разработки эффективных приближенных и аналитических 
методов, обладающих достаточной точностью [1, 2]. Такие методы 
полезны для интерпретации результатов численного моделирования 
[3–6] и экспериментальных данных, а также могут применяться 
в расчетах при варьировании параметров обтекания и формы тела. 

Одной из основных математических моделей, применяемой на 
практике, является модель пограничного слоя Л. Прандтля [7–13], 
согласно которой возмущенная область между телом и ударной вол-
ной разбивается на тонкий пограничный слой и внешнее невязкое 
течение. 

В статье рассмотрена модификация, представленного в работе 
[13] и имеющего развитие в работах [14–19], метода Польгаузена, ко-
торая оказывается достаточно эффективной при решении поставлен-
ной задачи. Аналитические выражения для распределения теплового 
потока, отнесенного к его значению в точке торможения, были полу-
чены для осесимметричного обтекания затупленных тел различного 
удлинения. Все полученные аналитические решения сравниваются 
с численным решением уравнений Навье — Стокса [1, 2].  

Система уравнений ламинарного пограничного слоя. Запи-
шем систему уравнений двумерного ламинарного пограничного слоя 
при установившемся течении сжимаемого газа в координатах, свя-
занных с поверхностью тела (координаты ,x y  — направлены вдоль 
образующей тела и по нормали к телу, соответственно): 
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• уравнение неразрывности: 

0;ur vr
x y

∂ρ ∂ρ+ =
∂ ∂

                                             (1) 

• уравнения движения, записанные для x и y  компонент соот-
ветственно: 

,u u dP uu v
x y dx y y

 ∂ ∂ ∂ ∂ρ + ρ = − + µ ∂ ∂ ∂ ∂ 
                              (2) 

0;dP
dy

=                                                     (3) 

• уравнение энергии: 
2

.
Pr

h h P u hu v u
x y x y y y

   ∂ ∂ ∂ ∂ ∂ µ ∂ρ + ρ = + µ +   ∂ ∂ ∂ ∂ ∂ ∂   
 

Здесь ρ  — плотность; u , v  — проекции вектора скорости на коор-
динаты x и ;y  r — цилиндрический радиус образующей тела; P — 
давление; µ  — динамическая вязкость; h  — энтальпия, Pr  — число 
Прандтля. 

В качестве определяющего соотношения запишем уравнение со-
стояния Клапейрона — Менделеева, устанавливающее зависимость 
плотности от давления и температуры в сжимаемых средах: 

,P RT= ρ  

где R  — газовая постоянная. 
Для дальнейшего описания будем приписывать индекс «0» пара-

метрам потока на стенке, а индекс «1» — параметрам на границе по-
граничного слоя. 

Теперь сформулируем граничные условия. Для непроницаемой 
стенки скорость должна удовлетворять условию прилипания 

0 0 0u v= =  при 0.y =  
На границе пограничного слоя при ( )y x= δ  для скорости u  и эн-

тальпии h  задают значения соответствующих параметров внешнего 
потока, т. е. 1u u=  и 1.h h=  

Для дальнейших преобразований вместо x , y  введем следующие 
координаты: 

,xξ =  1
1

0

( ) / ,
( , )

y x dy
x y

 µη = δ  µ 
∫  
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где η  — безразмерное приведенное расстояние; 
( )

1
1

0

x

dy
δ µδ =

µ∫  — 

приведенная толщина пограничного слоя, ( )xδ  — есть то конечное 
расстояние от стенки, на котором пограничный слой смыкается 
с внешним течением. Значению 0η =  соответствует поверхность 
стенки, а 1η =  — граница пограничного слоя. 

Поскольку в новых координатах справедливы следующие соотноше-

ния: ( ) ( ), 0 , 0 0    ,x x
x

∂ηη = ≡
∂

 ,PPP 
x x

∂ ∂ ∂ ∂η= +
∂ ∂ξ ∂η ∂

 1

1
,PPP 

y y
µ∂ ∂ ∂η ∂= =

∂ ∂η ∂ µδ ∂η
 

то уравнения (1)–(3) примут вид: 

0,ur ur vr
x x y

∂ρ ∂ρ ∂η ∂ρ ∂η+ + =
∂ ∂η ∂ ∂η ∂

 

2 2
1 1

2 2
1 1

,u u u dP uu v
x x dx

  µ µ∂ ∂ ∂η ∂ ∂ρ + + ρ = − +  ∂ ∂η ∂ µδ ∂η µδ ∂η
                 (4) 

1

1
0 0.PPP 

y
µ∂ ∂ ∂= = ⇔ =

∂ µδ ∂η ∂η
 

Уравнение энергии запишем следующим образом: 
22 22

1 1 1
2 2 2

1 1 1

1 .
Pr

h h h dP h uu v u
x x dx

   µ µ µ∂ ∂ ∂η ∂ ∂ ∂ρ + + ρ = + +   ∂ ∂η ∂ µδ ∂η ∂ηµδ ∂η µδ   
      (5) 

На границе пограничного слоя напряжение трения равно нулю, 

следовательно 
1

0.
 ∂ =  ∂η

u  Поскольку первая производная от скорости 

по нормальной координате равна нулю, то после подстановки в урав-

нение движения находим, что 
2

2
1

0.
 ∂ = ∂η 

u  

С учетом граничного условия на стенке система принимает вид: 

0 0
0,

 ∂ρ ∂ρ ∂η  + =      ∂ ∂η ∂
ur vr
x y

                                 (6) 

2 2
1

2 2
0 1 0

,
 µ ∂=  µ δ ∂η 

dP u
dx

                                       (7) 

22

2
00

1 0.
Pr

   ∂ ∂+ =    ∂η∂η 
h u                                      (8) 
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Из соотношения (6) следует, что при 0r ≠  производная 

0
0.

 ∂ρ =  ∂η
v                                             (9) 

Динамическую вязкость µ  можно определить, воспользовавшись 
формулой Сазерленда или степенной зависимостью [9], которые ши-
роко применяют на практике.  

Формула Сазерленда имеет вид: 
3/2

00

00
.a

a a

T T T
T T T

 +µ =  µ +  
                                   (10) 

Здесь T  — температура в рассматриваемой точке на поверхности те-
ла. Входящие в эту формулу характерные величины имеют следую-
щие значения [9]: 00 110T =  K, 273aT =  K, 51,72 10а

−µ = ⋅  кг/м·с. 
Степенная зависимость имеет вид: 

0 0
,h

h

ω µ =  µ  
                                            (11) 

где ~ 0,7.ω  
Будем рассматривать случаи, когда динамическую вязкость на 

теле определяют формулы (10) или (11), а внутри и на границе по-
граничного слоя — выражение (11). Формула (10) полезна для того, 
чтобы связать между собой число Маха набегающего потока M ,∞  
число Рейнольдса Re∞  и высоту полета с использованием таблиц 
стандартной атмосферы.  

Краткие сведения о методе Польгаузена. Согласно методу 
Польгаузена, скорость в пограничном слое представляется полино-
мом четвертой степени: 

2 3 4

1
( ) ( ) ( ) ( ) ,

( )
uu a x b x c x d x

u x
= = η ( η ( η ( η                 (12) 

где u  — безразмерная скорость; 1( )u x  — скорость на границе погра-
ничного слоя. 

Далее введем безразмерный параметр: 
22

0 1
2 2

110

1( ) ,u dPx
u dx

  µ δ∂Λ = − = − ∂η µ 
                               (13) 

причем P  зависит только от ,x  т. е. ( ).P P x=  
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Используя граничные условия на стенке (условие прилипания) 
и на границе пограничного слоя для скорости, а также для равенства 
нулю первой и второй производной от скорости по нормальной коор-
динате для определения коэффициентов полинома (12), получим сис-
тему уравнений: 

2 ,
1,

2 3 4 0,
2 6 12 0.

b
a b c d

a b c d
b c d

− = Λ
 + + + =
 + + + =
 + + =

                                      (14) 

Решение системы (14) дает коэффициенты ,a  ,b  c  и .d  Подста-
вив найденные коэффициенты в формулу (12), найдем классический 
полином Польгаузена: 

2 3 4

1
2 2 1 .

6 2 2 6
uu
u

Λ Λ Λ Λ     = = + η − η + − + η + − η          
 

Причем, согласно [13], для параметра Λ  вводят оценку 12 12.− ≤ Λ ≤  
Далее в методе Польгаузена вводят понятия толщина вытеснения 

и толщина потери импульса, находят связи для отношения этих вели-
чин к толщине пограничного слоя и выводят дифференциальное 
уравнение для определения функции ( )xΛ , через которую определя-
ют остальные характеристики пограничного слоя. Отметим, что при 
этом для неадиабатической стенки необходимо вводить некоторые 
гипотезы для отношения упомянутых толщин. 

Уточненная оценка для параметра Λ(x). Рассмотрим важный 
для практики случай, когда стенка является относительно холодной. 
Уточним эту оценку в практически важном случае, когда тепловой 
поток: 

0 0

0
0.

Pr Pr
h hQ
y y

µ µ  ∂ ∂ ∂η= = > ∂ ∂η ∂ 
 

Продифференцировав уравнение движения с учетом того, что на 
стенке 

0,u v
x x

∂ ∂ ∂η= = =
∂ ∂η ∂

 

и выполнив преобразования, получим: 
3 2

3 2
0 0 0

1 6/ .
2

    ∂µ ∂ ∂= =    µ ∂η  ∂η ∂η   
u u c

b
                           (15) 
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Как было сказано ранее, динамическая вязкость µ  на теле опре-
деляется формулой Сазерленда или степенной зависимостью. Про-
дифференцируем формулы (10) и (11) по .η  

Учитывая, что ,Ph c T=  для формулы (10) имеем: 

0

00 000 0 0

1 3 1 .
2/

    ∂µ ∂= − +     µ ∂η ∂η   ′ + 

h h
hT T h

                   (16) 

Здесь 2
0

11 M
2

T T∞ ∞
γ − ′ = +  

 — температура в точке торможения; 

M∞  — число Маха набегающего потока, T∞  — температура набега-
ющего потока (определяется с помощью стандартной атмосферы по 
заданным числам Рейнольдса Re∞  и Маха M∞ , число Рейнольдса 

0Re ,V R∞ ∞
∞

∞

ρ=
µ

 0R  — значение радиуса кривизны в точке торможения).  

Для степенной зависимости (11) с учетом const ,tµ = ⋅h  получим: 

0 00

1 .
   ∂µ ω ∂=     µ ∂η ∂η 

h
h

                                      (17) 

Поскольку рассматриваем случай, когда тепловой поток 0,Q >  то 

0
0.

 ∂ >  ∂η
h  Из формулы (16) или (17) с учетом (15), получим:  

( )6 2 / 2
0.

− + Λ
− >

Λ
 

Из последнего неравенства следует, что при 0Q >  оценка пара-
метра Польгаузена будет 0 4.< Λ <  

Модификация метода Польгаузена. Пользуясь зависимостями 
для распределения давления на затупленных телах [14–16], проведем 
модификацию этого метода, чтобы упростить процедуру и отказаться 
от решения дифференциального уравнения.  

Аналогично скорости представим в виде полинома четвертой 
степени следующую функцию: 

2
2 3 4

0( ) ( ) ( ) ( ) ( ) ,
2

uh x h p x q x s x t x( α = ( η ( η ( η ( η              (18) 

где ( )xα  — безразмерный «кинетический» параметр, подлежащий 
определению. При 1α =  соотношение (18) дает полную энтальпию 
единицы массы газа. 
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Найдем коэффициенты ,p  ,q  s  разложения. Для этого запишем 
первые три производных соотношения (18): 

2 32 3 4 ,h uu p q s t∂ ∂+ α = + η + η + η
∂η ∂η

                       (19) 

22 2
2

2 2 2 6 12 ,h u uu q s t ∂ ∂ ∂+ α + α = + η + η ∂η∂η ∂η 
                 (20) 

3 2 3

3 2 33 6 24 .h u u uu s t∂ ∂ ∂ ∂+ α + α = + η
∂η∂η ∂η ∂η

                    (21) 

Учитывая то, что на стенке при 0η =  для скорости выполняется 

0 0,u =  производные (19)–(21) примут вид:  

0
,

 ∂ =  ∂η
h p                                               (22) 

22

2
00

2 ,
   ∂ ∂+ α =    ∂η∂η 

h u q                                      (23) 

3 2

3 2
00 0

3 6 .
    ∂ ∂ ∂+ α =      ∂η∂η ∂η   

h u u s                               (24) 

Из (19)–(24) получим: 

( ) ( )
2 2 2

2
0

0

( / 2)
Pr .

 ∂ ( α  ∂  = α −   ∂η∂η  

h u u  

Будем рассматривать наиболее часто встречающийся в практике 
расчетов режим, когда энтальпия 0h  (или температура) на стенке по-
стоянна. Тогда продифференцировав уравнение (5) с учетом (7)–(9) 

и ( ) 0 , , 0x
x

∂η =
∂

 получим: 

2 3

2 3
0 0 0

13 0,
Pr

    ∂ ∂ ∂+ =      ∂η ∂η ∂η   
u u h  

поэтому 

( ) ( )
3 2 2

3 2
0 00

( / 2)
3 Pr .

 ∂ ( α   ∂ ∂  = α −     ∂η∂η ∂η    

h u u u  
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Таким образом, формулы (22)–(24) можно привести к виду: 

( )2

0
0

( / 2)
,

 ∂ ( α  ∂  = =  ∂η ∂η  

h u h p                             (25) 

( ) ( )
2 2 2

2
0

0

( / 2)
Pr 2 ,

 ∂ ( α  ∂  = α − =  ∂η∂η  

h u u q  

( ) ( )
3 2 2

3 2
0 00

( / 2)
3 Pr 6 .

 ∂ ( α   ∂ ∂  = α − =    ∂η∂η ∂η    

h u u u s  

Вывод уравнения для определения Λ. Введем следующие обо-

значения: 0

0 00 0

3
2( / )

κ = − (
′(

κ

κ T T
 — при использовании формулы Са-

зерленда на стенке, κ = ω  — для случая степенной зависимости. 
С учетом формул (15), (16) (или (17) для степенной зависимости 

на стенке) и (25) коэффициент p  полинома (18) примет вид:  

0 12 3 .hp − Λ=
h Λ

                                              (26) 

Приняв во внимание разложение скорости для коэффициентов ,q  
s  получим выражения: 

( )
22

1Pr 2 ,
2 6

uq Λ = α − +  
                                   (27) 

( ) 2
1

Pr
2 .

2 6
s u

α − Λ = − + Λ  
                                 (28) 

Для дальнейших преобразований при выводе искомого уравнения 
для функции ( )xΛ  получим выражение 

1
.

 ∂
  ∂η

h  

Продифференцируем формулу (4) с учетом того, что на границе 

пограничного слоя 
2

2
1 1

0,
  ∂ ∂= =    ∂η ∂η 

u u  а также ( )  , 1 0.u x
x

 ∂ ∂ = ∂ ∂η 
 

Получим: 



Модификация метода Польгаузена для расчета тепловых потоков… 

41 

2 3
1 1

1 2 3
111 1

1 .
   ∂ µ∂ρ ∂ ∂ρ= = −    ∂η ∂ ρ ∂ηµδ ∂η 

u u dPu
x dx

                     (29) 

Поскольку для совершенного газа 
1

Ph γ=
γ − ρ

 ( ,P

V

c
c

γ =  где Pc  — 

коэффициент теплоемкости при постоянном давлении; Vc  — коэф-

фициент теплоемкости при постоянном объеме), то 1 1 .h
h

∂ ∂ρ− =
∂η ρ ∂η

 

Следовательно, на границе пограничного слоя справедливо соотно-
шение: 

2 3
1
2 3

1 11 1

1 .
   µ∂ ∂=    ∂η µδ ∂η 

h dP u
h dx

 

Учитывая (13) и (29), получим искомое выражение:  
3

1 1
2 3
1 01 1

.
( / )

   µ∂ ∂= −    ∂η µ µ Λ ∂η 
hh u                            (30) 

Из формулы (12) на границе имеем:  
3

3
1

6 24 12 .
 ∂ = + = − Λ ∂η 

u c d  

Тогда выражение (30) преобразуем к виду: 

0
1

11

12 .
  µ∂ − Λ= −  ∂η µ Λ

h h                                 (31) 

Согласно формуле (18) применительно к границе пограничного 
слоя имеем: 

1
2 3 4 .

 ∂ = + + +  ∂η
h p q s t  

Таким образом, на границе пограничного слоя, получим систему 
уравнений:  

1

2
1

1 0

2 3 4 ,

,
2

  ∂ = + + +   ∂η



+ α − = + + +

h p q s t

uh h p q s t

                            (32) 
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из которой следует уравнение: 

2
1

1 0
1

3 2 4 .
2

   ∂+ + = + α − −    ∂η 
u hp q s h h                       (33) 

На внешней границе пограничного слоя при установившемся те-
чении справедлив интеграл Бернулли: 

22
max1

1 ,
2 2

Vuh H+ = =  

где H  — полная энтальпия (энтальпия торможения); maxV  — макси-
мальное значение модуля скорости. 

На линии тока модуль скорости не может превышать максималь-
ного значения 1 max ,u V≤  причем: 

2
max 2 .V H=                                             (34) 

Перепишем интеграл Бернулли с учетом выражения (34): 
22

max1
1 .

2 2
Vuh + =  

Здесь имеет место соотношение 
( 1)/ 2

1

0 max
1,uP

P V

γ− γ   
( =   ′   

 

где 0P′  — давление в точке торможения (для совершенного газа 
1,4γ = ), поэтому: 

( 1)/2
1

0
2 1 .u P

H P

γ− γ   = −  ′   
                                  (35) 

Введем безразмерные параметры следующим образом: 
( 1)/

1
1

0
,h Ph

H P

γ− γ 
= =  ′ 

                                    (36) 

0
0 , .h hh h

H H
= =                                          (37) 

Функция 1h  имеет простую физическую интерпретацию, харак-
теризует термодинамическое состояние газа и представляет собой 
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отношение температуры движущегося газа к температуре изоэнтро-
пически заторможенного потока.  

На границе пограничного слоя будем использовать степенную за-
висимость (11). Тогда производная (31) примет вид: 

1
0 1

1

12 .
ω −ω ∂ − Λ= − ∂η Λ 

h h h                                (38) 

Учитывая выражения (26)–(28) и (36)–(38), перепишем уравнение 
(33) для определения параметра Λ  в конечном виде: 

( )( ) ( )( )
( )( )

2
0

1 1

1
1 0 0 1

12 33 2 Pr 1 2 Pr 1 2
6 6

124 1 1 1 .
ω −ω

− Λ Λ Λ   + α − − + − α − − Λ + =      κ Λ
− Λ = + α − − − +  Λ

κ κκ

κκκκ  

(39) 

Выбор кинетического параметра. Выбор кинетического пара-
метра ( )xα  осуществим таким образом, чтобы соотношение (39) для 
определения ( )xΛ  свелось к квадратному уравнению. Этому требо-

ванию удовлетворяет следующее правило: если величина 2
1± +

Λ

Pr 0,+ >  то α  полагается равным этой величине, а если 2
1 Pr 0± + ≤

Λ
 

или Λ является комплексным числом, то 0.α =  

Непосредственными расчетами установлено, что 2
1 Prα = +

Λ
 да-

ет хороший результат для тел малого удлинения, а 2
1 Prα = − +

Λ
 для 

тел большого удлинения. При подстановке данного параметра в фор-
мулу (39) в обоих случаях выражение принимает вид квадратного 
уравнения, причем его корень (знак перед радикалом в корне) выби-
рают с учетом 0 4,< Λ <  поскольку ищут решение для 0.Q >  

Расчет давления. Для использования соотношения (39) также 
необходимо знать распределение давления на всем участке между 
рассматриваемой точкой и точкой полного торможения. Определим 
давление, воспользовавшись методом, описанным в работах [14–16]: 

/( 1)
1

0
.PP h

P
γ γ−

= =
′

 

Согласно этому методу давление на поверхности произвольных 
затупленных тел можно определить с помощью аналитической фор-
мулы 
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( )( /( 1))2

2
0

1 ,
1

P k
P k

λ σ γ γ− − χ=   ′ ( χ 
                              (40) 

где 
( )2

*

1 1 ;
3 / 2

k γ *=
γ + σ *π

 ;
2
πχ = σ −  σ  — угол между осью тела 

и вектором скорости набегающего потока в рассматриваемой точке, 
*σ  — положение звуковой точки. 

Для затупленных тел, отличных от сферы, функцию ( )λ σ  на 
участке [ ]*, /  2σ π  представим квадратичной: 

( ) 2 .a b cλ σ = σ + σ +                                      (41) 

На участке [ ]min *,  σ σ  функция ( ),λ σ  согласно данным [15], явля-
ется линейной. Граница отрезка min / 4.σ ≥ −m  

В звуковой точке квадратичная и линейная функции гладко со-
прягаются, кроме того, в звуковой точке и в точке торможения 

( )*( ) / 2 1.λ σ = λ π =  С использованием этих условий для функции 
( )λ σ  определяются коэффициенты квадратичной зависимости (41). 

Расчет тепловых потоков. Тепловой поток определяют следу-
ющим соотношением: 

0 0 0 1

100

1 12 3 .
Pr Pr Pr

hh hQ
y y

 µ µ   µ∂ ∂ ∂η − Λ= = =   ∂ ∂η ∂ h δ Λ  
             (42) 

Здесь 

1 1 01

1

( / ) ,du dxρ µµ =
δ Λ

 0

0 00 0

3
2/

h
h T T

h = − +
′+

 

для случая формулы Сазерленда на стенке, κ = ω  для случая степен-
ной зависимости. 

Таким образом, для определения теплового потока на поверхно-
сти тела получаем отношение: 

( )
3/2

1 1
3/2

0 1 1 /2

(12 3 ) / ( / )
,

(12 3 ) / ( / )

du dxQ
Q du dx

σ=π

− Λ Λ ρ
=

− Λ Λ ρ
                  (43) 

где 0Q  — значение теплового потока в точке торможения. 
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В этом соотношении 1 11 ,
( )

du du
dx R d

= −
σ σ

 
1/

1/( 1)1 1
1

0 0
,P h

P

γ
γ− ρ = = ρ  

 где 

( )R σ  — радиус кривизны кривой, описывающей сечение тела; 0ρ  — 
плотность в точке торможения. 

С учетом формул (35) и (36) производная под корнем в соотно-
шении (43) примет вид: 

1 1
1

1 1 2 1 .
( ) ( )

du du dH h
dx R d R d

= − = − −
σ σ σ σ

                  (44) 

Тогда имеем конечную формулу для определения теплового по-
тока, отнесенного к тепловому потоку в точке торможения: 

3/2 1/
1

3/20
1

/2

(12 3 )/ ( / ( ))( / ) 1
.

(12 3 )/ (1/ ( ))( / ) 1

γ

σ=π

− Λ Λ σ σ −
=

 − Λ Λ σ σ −  

P R γ γ hQ
Q R γ γ h

          (45) 

Перепишем формулу (45) с учетом аналитического выражения 
для расчета давления (40). Производная формулы (44) имеет вид: 

( )
12

1
2 22

1

2 2

2 2

1 1 1 4
12 1 1

1 1ln .
1 1

d h k k
d kh k

k k
k k

λ−

λ

   − − χ χ  = − λ − +   σ + χ − + χ  


    ∂λ − χ − χ+    ∂σ + χ + χ    


           (46) 

С учетом особенности в точке торможения при / 2σ = π  и выра-
жения (46), а также при том, что ( )/ 2 1,λ π =  формула для теплового 
потока принимает вид: 

( )
( )

( ) ( )

11/( 1) 2 2 2

3/2 2 2 2 220 1

3/2

12 3 1 1 1 4 1 1ln :
2 ( ) 1 1 11 1

12 3 / 2 1: 2 .
/ 2/ 2

λ− λγ −        − Λ τ − χ χ ∂λ − χ − χ  : λ − (       σ ∂σΛ ( χ ( χ ( χ     − ( χ   
− Λ π

πΛ π

Q k k k k
Q R k k kh k

k
R

(47) 
В этой формуле производную /∂λ ∂σ  на участке [ ]*, /  2σ π  берем 

от квадратичной функции (41), а на участке [ ]min *,  σ σ  от линейной, 
приведенной в работе [15]. 
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Пересчет тепловых потоков. Формулу для теплового потока 
также можно записать с учетом коэффициента теплопередачи: 

( )0 ,e
P

AQ h h
с

= −                                         (48) 

где A  — коэффициент теплопередачи; eh  — энтальпия восстановле-

ния, которая в свою очередь имеет вид ( ) 1Pr 1 Pr .eh h= + −  

В точке торможения энтальпия восстановления 1,eh =  поэтому:  

( ) ( )0 00/ 1 .PQ A с h= −                                     (49) 

Отнесем (48) к (49) и получим формулу для определения тепло-
вого потока на поверхности тела с учетом теплопередачи: 

( )
( )

0

0 00

/
.

/ 1
P e

P

A с h hQ
Q A с h

−=
−

 

Как известно из многочисленных расчетов, величина / PA с  слабо 

зависит от энтальпии 0 ,h  поэтому для пересчета с «холодной» стенки 
на «горячую» в случае необходимости будем использовать соотно-
шение:  

( )
( )

0 00

0 0 0

( ) / (1 )/
,

/ ( ) / (1 )
H H

C C

eH

eC

h h hQ Q
Q Q h h h

− −
=

− −
                         (50) 

где индекс H  относится к горячей стенке, а индекс С  — к холодной.  
Анализ результатов. Приведем результаты расчета тепловых по-

токов по предложенному методу для сферы (рис. 1, а, б), эллипсоидов 
с различными соотношениями полуосей /b a  (рис. 2, а–в) и параболо-
ида (рис. 3). Результаты были получены для тех же режимов, что чис-
ленное решение задачи в рамках уравнений Навье — Стокса [1]. 

Результаты для сферы приведены в зависимости от угла σ  (град), 
а для эллипсоида и параболоида в зависимости от длины дуги вдоль 
образующей тела .S  

При сравнении результатов видно, что метод дает практическое 
согласование с численным решением [1, 2], причем относительная 
погрешность в большинстве случаев не превышает 5 %. Отметим, что 
при относительно горячих температурах стенки (см. рис. 2, б) приме-
нение формулы (47) дает более высокую погрешность порядка 20 % 
с решением [1, 2]. По этой причине для «горячей» стенки будем ис-
пользовать формулу (50). 
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Рис. 1. Результаты расчета тепловых потоков для сферы: 

а — M 10,   0 0, 25,h =  Re 500,   Pr 0, 72;  б — M 10,   0 0, 35,h =  Re 3500,   

Pr 0, 72;  1 — решение по формуле (47) с учетом формулы Сазерленда (10) на стенке; 2 — 
численное  решение  [1, 2]  по  модели  в рамках полных уравнений Навье — Стокса; 3 — ре- 

шение по формуле (47) с учетом степенной зависимости (11) на стенке 

 
Рис. 2. Результаты расчета тепловых потоков для эллипсоида при Re 1000,   Pr 0, 75:=  

а — / 3 / 2,b a   M 10,   0 0,16;h =  б — / 3 / 2,b a   M 4,   0 0, 8;h =  

в — / 1 / 2,b a   M 10,   0 0,16;h =  1 — решение по формуле (47) с учетом степенной 
зависимости (11) на стенке; 2 — решение по формуле (47) с учетом формулы Сазерленда (10) 
на  стенке;  3 — численное  решение  [1, 2]  по  модели  в  рамках  полных  уравнений  Навье —  

Стокса; 4 — пересчет теплового потока по формуле (50) 
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Рис. 3. Результаты расчета тепловых 
потоков для параболоида при 1, 604,p =  

M 10,∞ =  0 0,16,=h  Re 1000,∞ =  
Pr 0, 75 ::  

1 — решение по формуле (47) с учетом 
формулы Сазерленда (10) на стенке; 2— 
численное решение [1, 2] по модели 
в рамках полных уравнений Навье — 
Стокса; 3 — решение по формуле (47) 
с   учетом   степенной  зависимости  (11)  

на стенке 

 
По данным рис. 2, б, использование формулы (50) дает удовле-

творительную погрешность для эллиптической поверхности при пе-
ресчете со стенки 0 0,24=h  на 0 0,8.=h  Таким образом, если не 
удается прямо получить удовлетворительный результат по формуле 
(47), следует использовать формулу для пересчета тепловых потоков. 

Вывод. На основе представленной модификации метода Поль-
гаузена были произведены расчеты тепловых потоков на поверхности 
затупленных тел и проведено сравнение с данными, полученными 
в рамках модели уравнений Навье — Стокса [1].  

Анализ результатов показал, что этот метод хорошо согласуется 
с численным решением, причем относительная погрешность не пре-
вышает в большинстве случаев 5 %. Лишь для относительно горячей 
стенки погрешность решения может достигать ~ 20 %. В этом случае 
следует использовать формулу для пересчета тепловых потоков, ко-
торая снижает искомую погрешность также до 5 %.  

Рассмотренная модификация наряду с аналитической зависимо-
стью для расчета давления позволяет быстро и эффективно оценить 
тепловые потоки на поверхности затупленных тел различного удли-
нения. При этом не надо решать задачу численно в рамках уравнений 
пограничного слоя или Навье — Стокса. В отличие от классического 
приближенного метода Польгаузена параметр ( )xΛ  определяется 
аналитически без использования дифференциального уравнения от-
носительно толщины вытеснения пограничного слоя или толщина 
потери импульса. 
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Modification of Pohlhausen method for calculating 

heat transfer on blunt bodies 
© V.P. Kotenev, V.N. Bulgakov, Yu.S. Ozhgibisova 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
Modification of Pohlhausen method is developed. It allows for quick and effective heat 
transfer distribution over the blunt body surfaces. Calculations were done. Their results 
are described in comparison with the numerical solution of a problem within the frame-
work of Navier — Stokes equations. 
 
Key words: supersonic flow, boundary layer, Pohlhausen method. 
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