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Разработана многоуровневая модель для многомасштабного деформирования 
трехслойных (сэндвичевых) конструкций из полимерных композиционных материа-
лов типа пластин с заполнителем на основе пенопласта, учитывающая микроме-
ханические процессы деформирования и повреждаемости матрицы, армирующего 
наполнителя и пенопласта, а также макроскопические дефекты типа непропитки 
композитных обшивок. Проведено конечно-элементное моделирование напряжен-
но-деформированного состояния, повреждаемости и разрушения трехслойных 
пластин с обшивками из гибридных композитов из углепластика, с различными 
размерами дефекта типа непропитки, при изгибе равномерным давлением. Уста-
новлены особенности процесса деформирования и повреждаемости данного типа 
композитных конструкций. Разработанная методика может быть применена для 
расчета деформирования, повреждаемости и разрушения трехслойных пластин из 
полимерных композиционных материалов, применяемых в различных отраслях 
промышленности: судостроении, авиастроении, ракетостроении. 

Ключевые слова: трехслойные конструкции, полимерные композиционные мате-
риалы, многомасштабное моделирование, дефекты, метод конечного элемента, 
слоисто-волокнистые композиты, моноволокна, повреждаемость. 

Введение. Трехслойные (сэндвичевы) конструкции, состоящие из 
жестких и прочных несущих слоев (обшивок) и легкого низкопроч-
ного заполнителя, обычно пенопласта, активно применяют в различ-
ных областях промышленности благодаря их высокой изгибной 
жесткости и малой плотности [1–4]. Применение в качестве обшивок 
полимерных композиционных материалов (ПКМ) существенно по-
вышает эффективность таких конструкций.  

Одной из проблем создания сэндвичевых конструкций из ПКМ 
является наличие значительных технологических дефектов типа рас-
слоений или непропитки, обусловленных особенностями технологии 
изготовления [5–12]. Весьма актуальной данная проблема является 
для судовых сэндвичевых конструкций из ПКМ, активно применяе-
мых в последнее время в судостроении и характеризующихся значи-
тельными размерами и толщинами. Исследованию влияния дефектов 
в прочностные характеристики композитных конструкций посвящено 
значительное количество работ [6–10], однако общепринятых моде-
лей и методов для расчета этих конструкций пока не существует.  
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В настоящей работе предложено использовать многомасштабную 
модель для расчета прочности сэндвичевых конструкций из ПКМ 
с дефектами, хорошо зарекомендовавшую себя при анализе прочности 
композитных конструкций при наличии дефектов микроскопического 
масштаба [13–18]. Кроме того предлагается развитие этой модели за 
счет совместного учета макроскопических дефектов типа обрыва от-
дельных моноволокон в композитах, микротрещин между моноволок-
нами и макроскопических дефектов типа непроклея слоев обшивок.  

Многомасштабная модель иерархической структуры трех-
слойной конструкции из ПКМ. Для расчета прочности элементов 
конструкций из ПКМ, например судовых панелей типа «сэндвич» 
с пенозаполнителем и обшивками из угле- и стеклопластика, при ста-
тических нагружениях применим многомасштабную модель много-
уровневой иерархической структуры (рис. 1). 

 

Рис. 1. Математическая модель многоуровневой иерархической струк-
туры трехслойной конструкции на основе СВК и пенозаполнителя: 

1 — ЯП2.1 (1D-материал); 2 — ЯП2.2 (пенопласт) 
 
Модель имеет два иерархических уровня. На первом, верхнем 

уровне находится сама трехслойная конструкция, состоящая их двух 
обшивок (нижней и верхней) и заполнителя. Обшивки представляют 
собой слоисто-волокнистый композит (СВК) на основе углеродных 
или стеклянных волокон. Каждый слой СВК (второй уровень) — это 
однонаправленный материал (1D-материал), волокна которого ори-
ентированы в определенном направлении ( )

3
αξO  под углом αϕ  
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в плоскости, ортогональной к оси 1.ξO  Этот 1D-материал можно 
представить состоящим из большого числа ячеек периодичности 
ЯП2.1, представляющих собой моноволокна, соединенные между со-
бой полимерной матрицей. 

В качестве заполнителя чаще всего используют пенопласт (пено-
заполнитель), имеющий структуру, близкую к периодической. Его 
ячейка периодичности ЯП2.2 включает в себя две компоненты: непо-
средственно материал пенозаполнителя и пустоты, окружающие его.  

В трехслойной (сэндвичевой) конструкции слои будем нумеро-
вать следующим образом: 11,..., α = n  — номера слоев СВК нижней 
обшивки; 1 1α = +n  — слой заполнителя (пенопласта); 1 2,...,α = +n  

1 21+ +n n  — слои СВК верхней несущей обшивки; 1 21= + +N n n  — 
общее число слоев конструкции. 

Расчет упругих характеристик 1D-материала с учетом повре-
ждаемости. Для вычисления компонент тензоров модулей упругости 
1D-материала ( ) ' ( )α

ijklC z  воспользуемся приближенной моделью смесе-
вого типа [19], в которой 1D-материал рассматривают как систему 
параллельно расположенных однонаправленных (1D) элементов ци-
линдрической формы. Тогда технические модули упругости 1D-
материала вычисляем по смесевым формулам: 

(1 ),= ϕ ( − ϕ′l f f m fE E E  
1

1
,

− ϕ − ϕ
= + 

 
f f

t
f m

E
E E

 

(1 ),ν = ν ϕ ( ν − ϕl f f m f  ,ν = νt m                           (1) 

1
2 (1 ) 2(1 )(1 )

.
− ϕ ( ν − ϕ ( ν

= ( 
 

f f f m
l

f m
G

E E
 

Здесь и далее: lE  — продольный модуль упругости 1D-материала 
в направлении ее укладки; ϕ f  — относительное объемное содержа-
ние моноволокон в нитях; ,′fE  fE  — продольный и поперечный мо-
дули упругости моноволокон, которые полагаются трансверсально-
изотропными; tE  — поперечный модуль упругости; νl  — продоль-
ный коэффициент Пуассона; ,ν′f  ν f  — продольный и поперечный 
коэффициенты Пуассона моноволокон; mE  и νm  — модуль упруго-
сти и коэффициент Пуассона матрицы; νt  — поперечный коэффици-
ент Пуассона; lG  — продольный модуль сдвига; ′fG  — продольный 



Ю.И. Димитриенко, Ю.В. Юрин, Н.Н. Федонюк 

6 

модуль сдвига моноволокон; 
2(1 )

=
( ν

t
t

t

EG  — поперечный модуль 

сдвига.  
По полученным значениям упругих констант вычисляются тен-

зоры упругих податливостей ( ) 'α
ijklП  1D-материала в собственных си-

стемах координат ( ):αξiO  

( ) ( ) ( )
1111 1122 1133

( ) ( )
2222 2233

( )
3333( )

( )
1313

( )
2323

( )
1212

' ' ' 0 0 0

' ' 0 0 0

' 0 0 0
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2
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 
 
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 
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 
 
 
  

− −
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− −
=

ijkl

l l

l l l

l t

l t t

l t
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t
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П

П

ν ν
E E E
ν ν
E E E
ν ν
E E E

G

G
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0

10 0 0 0 0
2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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l

lG

    (2) 

Тензор модулей упругости 1D-материала в собственной системе 
координат ( )αξiO  является обратным для тензора упругих податливо-

стей, ( ) ' ( ) 1( ') .α α −=ijkl ijklC П  
В модели полагаем, что 1D-материал может частично разрушать-

ся, когда достигнет значения 1 некоторый параметр повреждаемости 
( )
2 ,αz  при этом обнуляются все упругие модули, кроме ( ) ' .α

ααααC  Такое 
частичное разрушение происходит из-за микрорастрескивания мат-
рицы в составе 1D-материала без разрыва моноволокон. Если же па-
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раметр повреждаемости ( )
1

αz  достигает значения 1, то происходит 
полное разрушение 1D-материала из-за разрушения моноволокон 
и матрицы (окружающей моноволокна). При полном разрушении ни-
ти обнуляются все упругие модули ( ) '.α

ijklC  
Кроме того, полагаем, что полное разрушение 1D-материала мо-

жет произойти по еще одному сценарию, когда одновременно до-
стигнут значения 1 параметры повреждаемости ( )

2
αz  и ( )

3 .αz  Условие 
( )
3 1α =z  означает, что произошло отслоение данного 1D-материала от 

других слоев вследствие разрушения матрицы в тонком промежуточ-
ном слое между волокнами соседних слоев. В этом случае волокна 
в 1D-элементе не разрушаются, но происходит нарушение монолит-
ности слоя. В результате 1D-элемент превращается в совокупность 
несоединенных отдельных волокон.  

С учетом сказанного выражение для компонент тензора модулей 
упругости 1D-материала в собственной системе координат для всех 
этапов деформирования, вплоть до полного разрушения 1D-мате- 
риала, можно записать так: 

( ) ' ( ) ( ) ( )1 '
2 2

( ) ( ) ( )
1 2 3

((1 ( 1))( ') ( 1) ))

(1 ( 1) ( 1) ( 1)),

α α α α−
αααα α α α α

α α α

= − − ( − δ δ δ δ ×

× − − − − −

i j k lijkl ijklC h z П h z C

h z h z h z
    (3) 

где ( )
2( 1)α −h z  — функция Хевисайда, равная ( )

2( 1) 0,α − =h z  если 
( )
2 1,α <z  и ( )

2( 1) 1,α − =h z  если ( )
2 1.α ≥z  

Для СВК тензор модулей упругости ( )α
ijklC  α -го слоя в единой си-

стеме координат ,ξiO  у которой ось 1ξO  ортогональна к плоскости 

всех слоев, вычисляется применением к его компонентам ( ) 'α
ijklC  в соб-

ственной системе координат преобразования поворота [20]:  
( ) ( ) ' .α α α α α α= mnpq im jn kp lqijklC C Q Q Q Q                               (4) 

Здесь α
ijQ  — элементы матрицы поворота слоя с номером ,α  на угол 

αϕ  относительно оси 1.ξO  
Для расчета эффективных упругих характеристик пенопласта 

( ) ,α
ijklC  1 1,α = +n  применяют метод асимптотического осреднения, ос-

нованный на решении 3D локальных задач на ячейке периодичности 
ЯП2.2. Этот метод позволяет вычислять ( )α

ijklC  пенопласта по упругим 
характеристикам полимерной основы пенопласта с учетом его пори-



Ю.И. Димитриенко, Ю.В. Юрин, Н.Н. Федонюк 

8 

стости. Методика, использованная для расчета характеристик пено-
пласта, изложена в работе [14]. 

Расчет упругих характеристик трехслойной сэндвичевой кон-
струкции с учетом дефектов в единой системе координат. Для 
рассматриваемой тонкостенной сэндвичевой конструкции типа пла-
стины, состоящей из слоев СВК и пенопластового заполнителя, вы-
числяем мембранные, смешанные и изгибные жесткости конструк-
ции ,αβC  ,αβN  :αβD  

( ) ( ) ( )
55 2323 44 1313

1 1 1

( ) ( ) 2 2
66 1212 1( ) 1( 1)

1 1

, , ,

1, ( ) ,
2

α α α
γβ α α α α α αγγββ

α= α= α=

α α
α α γβ α α− αγγββ

α= α=

= = =

= = ξ − ξ

∑ ∑ ∑

∑ ∑

N N N

N N

C C h γ C C h γ C C h γ

C C h γ N C γ
     (5) 

( ) 2 2
55 2323 1( ) 1( 1)

1

1 ( ) ,
2

α
α α− α

α=
= ξ − ξ∑

N
N C d                          (6) 

( ) 3 3
1( ) 1( 1)

1

1 ( ) ,
3

α
γβ α α− αγγββ

α=
= ξ − ξ∑

N
D C γ  ( ) 3 3

55 2323 1( ) 1( 1)
1

1 ( ) .
3

α
α α− α

α=
= ξ − ξ∑

N
D C d (7) 

Здесь αh  — толщина α -го слоя в составе конструкции; 1( )αξ  — 
значение координаты 1ξ  для поверхностей слоев раздела: 1( )αξ =  

1( 1) ,α− α= ξ ( h  1,..., ,α = N  1(0) / 2,ξ = −h  
1

,α
α=

= ∑
N

h h  а h — толщина 

всей конструкции. В этих формулах учтено наличие возможного де-
фекта конструкции типа непроклея, где αd  — коэффициент сниже-
ния упругих свойств из-за наличия непроклея на всю толщину α -го 
слоя, значения αd  лежат в диапазоне: 0 1α< ≤d  и зависят от про-
дольных координат конструкции 2 ,ξ  3.ξ  

Макрозадача механики трехслойной конструкции. Для расче-
та деформирования трехслойной конструкции с дефектами применим 
модифицированную теорию тонких пластин Тимошенко. Система 
уравнений равновесия тонкой пластины состоит из двух уравнений 
для усилий ,

αα
T  ,

αβ
T  уравнения для перерезывающих сил 1,Q  2 ,Q  

и двух уравнений для моментов ,
αα

M  
αβ

M  [16–18]: 

0,αβαα

α β

∂∂
+ =

∂ξ ∂ξ

TT
  1 2

1 2
0,∂ ∂+ − ∆ =

∂ξ ∂ξ
Q Q p   0,αβαα

α β
α

∂∂
+ − =

∂ξ ∂ξ

MM
Q  
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 ,   2, 3α β =  и .α ≠ β                                          (8) 

Здесь 1 2∆ = −e ep p p  — перепад давления, действующий на пластину, 

где 1 ( );
2

=e e
hp p  2 ( )

2
= −e e

hp p  — значения давления на поверхностях 

пластины. 
Определяющие соотношения для трехслойной пластины записы-

ваем в виде соотношений между усилиями ,ααT  23,T  моментами 
,ααM  23M  и перерезывающими силами 2,Q  3Q  с одной стороны 

и деформациями ,ββe  23e  и кривизнами ,ββκ  23κ  срединной поверх-
ности — с другой [21]: 

3

2
( ),αα αβ ββ αβ ββ

β=
= ( κ∑T C e N  23 55 23 55 232( ),= ( κT C e N  

3

2
( ),αα αβ ββ αβ ββ

β=
= ( κ∑M N e D  23 55 23 55 232( ),= ( κM N e D            (9) 

 ,   2, 3α β =  и ,α ≠ β  2 66 12 ,=Q C e  3 44 13.=Q C e  

Деформации и искривления срединной поверхности вычисляются 
по следующим кинематическим формулам [20, 21] ( )2, 3 :  α :  

32
23 1

3 2

32
23

3 2

, 2 , 2 ,

, 2 .

α
αα α α

α α

α
αα

α

∂ ∂∂ ∂= = + = + γ
∂ξ ∂ξ ∂ξ ∂ξ

∂γ ∂γ∂γκ = κ = +
∂ξ ∂ξ ∂ξ

U UU We e e
                (10) 

Система уравнений равновесия (8), в которые подставлены опре-
деляющие соотношения (9) и кинематические соотношения (10), об-
разует замкнутую систему пяти уравнений относительно пяти неиз-
вестных функций ,αU  ,αγ  .W  

В качестве граничных условий на части 1∂Σ  контура ,∂Σ  ограни-
чивающего срединную поверхность пластины 0,Σ  к этой системе 
следует присоединить заданные значения усилий, моментов и пере-
резывающих сил: 

0 0 0
22 2 23 3 2 23 2 33 3 3 2 2 3 3

0 0
22 2 23 3 2 23 2 33 3 3

, , ,

, .

+ = + = + =

+ = + =

T n T n T T n T n T Q n Q n Q

M n M n M M n M n M
           (11) 
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На части 2∂Σ  контура задаем значения перемещений, прогиба 
и углов поворота ( )2, 3 :  α :  

0 ,α α=U U  0 ,=W W  0 .α αγ = γ                               (12) 

Отсюда при нулевых значениях 0 ,αU  0 ,W  0
αγ  получаем условия 

жесткой заделки контура 2∂Σ  пластины.  
На части 3∂Σ  контура задаем смешанные граничные условия: 

0 ,α α=U U  0 ,=W W  0
22 2 23 3 2 ,+ =M n M n M  0

23 2 33 3 3 .+ =M n M n M     (13) 

В частности, при нулевых значениях 0 ,αU  0 ,W  0
αM  получаем 

условия шарнирного закрепления. Выполняется условие согласова-
ния: 1 2 3 .∂Σ + ∂Σ + ∂Σ = ∂Σ  Запишем для задачи (8)–(13) вариацион-
ный принцип Хеллингера — Рейсснера [21], который можно пред-
ставить в виде двух вариационных уравнений: 

{ } [ ][ ] { } { } { }

{ } [ ] [ ]{ } { }
0 1 3

0{ } { } 0,

( ) 0.

Σ Σ ∂Σ (∂Σ

Σ

 δ Σ − δ Σ − δ =


 δ − Σ =


∫∫ ∫∫ ∫

∫∫

T TT

T

e G L u d Σ u d S u dl

e G L u e d
 (14) 

Здесь обозначены { }
8
e  — столбец обобщенных деформаций; { }

5
P  — 

столбец обобщенных нагрузок, заданных на срединной поверхности; 
{ }

5
u  — столбец обобщенных перемещений; { }0

5

S  — столбец обобщен-

ных нагрузок, заданных на граничном контуре: 

{ } 22 33 23 22 33 23 12 13
8

            ( , , , , , , ,  ) , = κ κ κ Te e e e e e                 (15) 

{ } 2 3 2 3
5

    ( , , , , ,    )= γ γ Tu U U W  { } ( )0 0 0 0 0 0
2 3 2 3

5

      , , , , ,  =
T

S T T M M Q  

{ } ( )
5

   0, 0, , 0, 0 .     = ∆ TP p  

Здесь также использована матричная форма кинематических соотно-
шений (10) между обобщенными деформациями и перемещениями 
{ } [ ]{ }

8 58 5
,

×
=e L u  где [ ]

8 5×
L  — матрица дифференциального оператора 

Коши; матричная форма определяющих соотношений (9) { }
8

=T  
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[ ]{ }
88 8

,
×

= G e  где [ ]
8 8×
G  — обобщенная матрица упругости. Она имеет сле-

дующий вид: 

3 3 3 3

8 8 3 3 3 3

2 2

[ ] [ ] 0

[ ] [ ] [ ] 0 ,

0 0 [ ]

× ×

× × ×

×

 
 
 
 =
 
 
  

C N

G N D

C

 
22 23

23 33
3 3

55

0

[ ] 0 ,
0 0×

 
 =  
  

C C

C C C
C

                (16) 

22 23

23 33
3 3

55

0

[ ] 0 ,
0 0×

 
 =  
  

N N

N N N
N

 
22 23

23 33
3 3

55

0

[ ] 0 ,
0 0×

 
 =  
  

D D

D D D
D

 44

2 2 66

0
[ ] ,

0×

 
=   

C
C

C
 

{ } 22 33 23 22 33 23 2 3
8

, , , , , , ,       , =   

T

T T T T M M M Q Q  где { }
8
T  — столбец обоб-

щенных усилий. 
Для решения системы вариационных уравнений (14) используем 

метод конечных элементов, подробности численной реализации ко-
торого описаны в [21]. 

Расчет макронапряжений в трехслойной конструкции. После 
решения вариационных уравнений найдем значения обобщенных пе-
ремещений и деформаций { },e  { }u  в узлах каждого конечного эле-
мента (КЭ). Деформации в произвольной точке по координате 1ξ  
конструкции находим с помощью линейного закона, соответствую-
щего теории Тимошенко: 

1 ,αβ αβ αβε = + ξ κe  , 2, 3.   α β =                              (17) 

Тогда с помощью определяющих соотношений 
( ) ( ) , , , ,   2, 3, 1,...     , ,α ασ = ε = α =IJ IJKL KLC I J K L N                 (18) 

и модулей упругости (4) находим три напряжения ( )ασ IJ  в слоях 
сэндвичевой конструкции. 

Три остальных напряжения: поперечное нормальное ( )
11
ασ  и сдви-

говые ( )
12
ασ  и ( )

13
ασ  вычисляем согласно формулам асимптотической 

теории тонких пластин [16–18]: 

{ }( ) (0)( )
 1  1 , ,( ),α α

ξ
σ ( ωκ= − ξ IJKL KL J KL JC e  , , , 2,3, 1,..., ,= α =I J K L N   (19) 
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{ }{ } ( )( )( ) (0)( ) 3
11 , , 

2 ( ) 0,5 .α α
−ξ ξ

σ ω ( ωκ − ω ( ∆ ξ (= ξ IJKL KL JI KL JIC e σσ    (20) 

Здесь 1ξξ =
h

 — безразмерная поперечная координата; ω = h
L

 — 

геометрический параметр; L  — длина конструкции. В выражениях 
(19)–(20) также участвуют операторы осреднения по толщине плас- 
тины  

( ){ } ( ) ( )( )
1/2

,
ξ

ξ
−

ξ = ξ − ξ ξ∫  f f f d  ( ) ( )
1/2

1/2−

ξ = ξ ξ∫f f d              (21) 

и приведенные модули упругости слоев (0)( ) ( )α α= −IJKL IJKLC C  
( ) ( ) 1 ( )

11 1 1 ,α α − α− i KLIJk k iC C C  , 1  3.= i k  

Напряжения ( ) 'ασij  в α -м слое СВК в собственной системе коор-

динат ( )αξiO  для каждого слоя вычисляют следующим образом: 

( ) ( )' .α α α ασ = σij mn im inQ Q                                      (22) 

Соотношения для параметров повреждаемости 1D-материала. 
Разрушение 1D-материала вследствие разрыва моноволокон при про-
дольном растяжении или потери устойчивости моноволокон при 
продольном сжатии описывает параметр повреждаемости ( )

1 ,αz  для 
которого принимаем следующее выражение [21]: 

2 2( ) ( ) ( ) ( )
33 33 33 33( )

1

' ' ' '
.

2 2

α α α α
α

   σ ( σ σ − σ
   = (

σ σ      
α α

T C
z                      (23) 

Здесь σT  и σC  — пределы прочности материала при растяжении 
и сжатии вдоль волокон, для которых принимают следующие выра-
жения [21]: 

0 ,
2(1 )

ω ϕ   σ
σ = σ    σ   − ϕ


ff f

f

r S
f f mS

T fT S
m fTf

E
H

G
 ,σ = σ

C mS Ch          (24) 

где 

1 2
2 4

1 2
2 4

,   
,

,   

−

−

 >= 
<



C m m
C

T m m

s B B
h

s B B
 

2
2

, 2 4 2 4
,

 
 

( ) ,
 σ

= − ( σ 
mS

T C m m m m
mT C

s B B B B    (25) 



Численное моделирование деформирования и прочности… 

13 

1 2 3 4     , , t , g .= = = = Φ
′ ′

m m m
m m m m f

f ff

E E GB B B B
E GE

 

Также обозначены ,ω f  ,fS  ,fr  0H  — Вейбулловские параметры 
разброса прочности моноволокон; σ fT  — предел прочности пучка 
моноволокон; σmS  — предел прочности матрицы при сдвиге; Φ f  — 
средний угол разориентации моноволокон в 1D-материале. 

Для параметра повреждаемости ( )
2
αz  примем следующее выраже-

ние [21]: 

( )

( ) 2 2
2 2 22 2 2 2

2 2 2
2 4 32

1 1 1 1( ) ( )
( ) 3( ) ( ) 3( )

1 12 3 .
12( )

α ( −   
= − ( − (   σ σ σ σ   

((( 
σ

mC mS mT mS

Y
mS

z Y Y

Y K Y Y
    (26) 

Здесь ,σmT  σmT  — пределы прочности матрицы на растяжение и сжа-
тие. Также в формуле обозначены инварианты тензора напряжений: 

( )

( ) ( )
2 211 22

2 2

1
( ) ( ) ( ) ( ) ( )2 2 2 2 2 3

3 11 22 12 4 13 23
1

' ' ,  Y ,
2 2

( ' ') 4 ' , ( ') ( ') , .    

α α
±

α α α α α

±σ ( σ= =

= σ − σ ( σ = σ ( σ = m
Y

m

Y Y
Y

BY Y K
B

 (27) 

Для параметра повреждений ( )
3 ,αz  описывающего разрушение 

матрицы между слоями разных 1D-материалов, примем следующее 
выражение: 

( ) 2 2 2
3 2 2 .α

((  − −= σ ( σ ( σz B B B                               (28) 

Здесь обозначены следующие комбинации пределов прочности мат-
рицы на растяжение, сдвиг и сжатие:  

22 2 2 2 2
1 1 1 1 1,    ,    ,

3 3 3+ −= − = − =
σ σ σ σ σmT mS mC mS mS

B B B            (29) 

а также обозначены инварианты тензора напряжений в матрице: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 22 33

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( )2 ( )2
11 22 11 33 22 33 12 23 13

,            , ,
2 2

' 6 .

α α α α
α α α α

− (

α α α α α α α α α

σ − σ σ ( σ
σ = σ = σ = σ ( σ ( σ

σ = σ − σ ( σ − σ ( σ − σ ( σ ( σ ( σ

mkk mkk mkk mkk
m m mmkk

u m m m m m m m m m
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Напряжения в матрице ( )ασmij  связаны с напряжениями ( )ασij  в сло-

ях 1D-материала следующими соотношениями ( )
3 :αz  

( ) ( ) ( )
3     , , 2, 3,α α ασ = σ =mIJ m IJB I J  ( ) ( ) ( )

1 1 1     , 1, 2, 3.α α ασ = σ =m j m jB j          (30) 

Результаты численного моделирования. С помощью разрабо-
танной модели были проведены численные расчеты напряженно-
деформированного состояния и разрушения сэндвичевой конструк-
ции типа пластины при изгибе равномерным давлением. Закрепление 
торцов пластины было шарнирным. Пластина содержала дефект типа 
непропитки одной из обшивок. Форма дефекта — круговая. Величи-
на площади дефекта варьировалась от 2 до 10 % от площади средин-
ной поверхности пластины. Длина L  пластины 2,4 м; толщина пла-
стины 0,03639=h  м (толщина обшивок 1 0,003195=h  м, толщина 
заполнителя 2 0,03=h  м). На боковых торцах по направлению 2ξ  
было задано нулевое значение угла поворота нормали пластины 2,γ  
на торцах по направлению 3ξ  — нулевой прогиб, нулевое значение 
продольного перемещения 3U  и нулевое значение угла поворота 
нормали 2.γ  

В качестве СВК обшивок сэндвичевой конструкции были выбра-
ны материалы холдинговой компании «Композит», состоявшие из 
чередования двух слоев ровинговой углеткани саржевого плетения 
Ст-12026 со структурой армирования (0°/90°) и одного слоя биакси-
альной диагональной углеткани См-42010 со структурой армирова-
ния (+45°/–45°). Характеристики углеродных моноволокон в составе 
ровинговой и биаксиальной углетканей были подобраны из условия 
наилучшей аппроксимации экспериментальных данных по 1D-
материалу. Были получены следующие значения упругих и проч-
ностных характеристик моноволокон: 200=′fE  ГПа, 20=fE  ГПа, 

2, 2σ =fT  ГПа, 0, 25,ν =f  0,33,ω =f  0,07,=fs  0, 25,=fr  0 3,=H  
1 .Φ = °f  

Матрица в составе композита — Dion, упругие и прочностные 
характеристики матрицы, использовавшиеся в расчетах: 3=mE  ГПа; 

0,35;ν =m  35σ =mT  МПа; 43σ =mC  МПа; 27σ =mS  МПа.  
На рис. 2–6 представлены некоторые результаты решения макро-

задачи для сэндвичевой конструкции с дефектом типа непропитки 
площадью 10 %, расположенным в центре пластины.  
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Рис. 2. Распределение прогиба W  (м) в трехслойной пластине с дефектом типа 
непропитки при изгибе давлением 

 

 

Рис. 3. Распределение изгибного напряжения 33σ  (ГПа) на внешней 
поверхности трехслойной пластины с дефектом типа непропитки 
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Рис. 4. Распределение напряжения 22σ  (ГПа) на внешней поверхности трех-
слойной пластины с дефектом типа непропитки 

 

Рис. 5. Распределение поперечного напряжения 11σ  (ГПа) на срединной 
поверхности трехслойной пластины с дефектом типа непропитки 
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Рис. 6. Распределение сдвигового напряжения 13σ  (ГПа) на срединной 
поверхности трехслойной пластины с дефектом типа непропитки 

 
На данных рисунках продемонстрировано распределение прогиба 

W  и макронапряжений σij  при нагрузке (перепаде давления ∆p ), со-
ответствующей примерно 0,5 от предельного значения, при котором 
происходит полное разрушение. На рис. 7 показано распределение 
в сэндвичевой пластине комплексного параметра повреждаемости 

( )
1max{ ,αm = z  ( ) ( )

2 3 min{ , }}. α αz z  
Результаты расчетов показывают, что прогиб W  и углы поворота 

нормали 2 ,γ  3γ  малочувствительны к появлению дефекта в пластине: 
их значения практически не изменяются по сравнению со случаем от-
сутствия дефекта. Причина заключается в том, что перемещения и уг-
лы поворота являются интегральными характеристиками пластины и 
мало изменяются при малом вкладе дефекта в общую площадь.  

Напряжение изгиба 33σ  и боковое напряжение 22σ  существенно 
изменяют свое распределение по пластине при появлении дефекта. 
В окрестности дефекта возникает концентрация напряжений, приво-
дящая к повышению значений этих напряжений: максимальные значе-
ния 33σ  в верхнем слое пластины увеличиваются с 9,7 до 14,34 МПа; 
боковое напряжение 22σ  увеличивает свое значение в центре пласти-
ны, в окрестности дефекта, от 7,2 до 23,8 МПа максимальное значение.  
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Рис. 7. Распределение комплексного параметра повреждаемости π  на внеш-
ней поверхности трехслойной пластины с дефектом типа непропитки 

 
Поперечное    напряжение    11σ    на   срединной   поверхности    имеет 
максимум в окрестности дефекта и при наличии дефекта увеличивает 
свое максимальное значение от 0,0006 до 0,007 МПа. Сдвиговые 
напряжения 23σ  в плоскости пластины при наличии дефекта имеют 
поле концентрации в окрестности дефекта: возрастая с 0,053 до 2,27 
МПа. Напряжения межслойного сдвига 13σ  имеют максимум на тор-
цах пластины, их значения при наличии дефекта возрастают 
с 0,00222 до 0,041 МПа. Комплексный параметр повреждаемости π  
имеет ярко выраженный максимум только в зоне дефекта и составляет 
0,14. 

На рис. 8 показана расчетная диаграмма деформирования сэндви-
чевой пластины в виде зависимости давления ∆p  от максимального 
прогиба W пластины при различных значениях площади дефекта 
и при 30 %-ном снижении свойств материала обшивок в этой зоне. 
При значении давления 85 % от предельного для всех вариантов рас-
четов происходит частичное разрушение слоев обшивок с углом ар-
мирования 90° вследствие выполнения критерия ( )

2
αz = 1.  

При дальнейшем увеличении значения давления ∆p  происходит 
разрушение пенозаполнителя (рис. 8, 2–5) вначале в зоне стыка 
с  обшивками,  а  затем  —  по  всей  толщине  пластины (рис. 8, 6–9). 
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Рис. 8. Диаграммы деформирования (перепад давления — прогиб) 
трехслойной  конструкции  без  дефекта  и  с  дефектами  различной  

площади: 
1 — частичное разрушение в слоях с углом 90°; 2–5 — частичное 
разрушением в пенозаполнителе; 6–9 — полное разрушение пено-
заполнителя;    —  без  дефекта;  — площадь 5 %; — пло- 

щадь 7 %;  — площадь 10 % 
 

Полное разрушение пенозаполнителя влечет за собой резкое измене-
ние диаграммы деформирования, означающее исчерпание несущей 
способности сэндвичевой пластины, хотя полного разрушения обши-
вок при котором происходил бы разрыв моноволокон в слоях при 
этом не происходит. Наличие дефекта приводит к снижению пре-
дельного значения давления, которое выдерживает пластина, при-
мерно на 17 %, причем это снижение практически одинаково для 
пластин со значением площади дефекта 2–10 %. 

Заключение. Разработана многоуровневая модель для много-
масштабного деформирования трехслойных конструкций из ПКМ 
типа пластин с заполнителем на основе пенопласта, учитывающая 
микромеханические процессы деформирования и повреждаемости 
матрицы, армирующего наполнителя и пенопласта, а также макро-
скопические дефекты типа непропитки композитных обшивок. 

Проведено конечно-элементное моделирование напряженно-
деформированного состояния, повреждаемости и разрушения трех-
слойных пластин с обшивками из гибридных композитов из углепла-
стика с дефектом типа непропитки различных размеров при изгибе 
равномерным давлением. Установлены особенности процесса де-
формирования и повреждаемости данного типа композитных кон-
струкций. Разработанная методика может быть применена для расче-
та деформирования, повреждаемости и разрушения трехслойных 
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пластин из ПКМ, применяемых в различных отраслях промышленно-
сти: судостроении, авиастроении и ракетостроении. 

Исследование выполнено за счет гранта Российского научного фонда
(проект №14- 19-00847). 
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Numerical modeling of deformation and strength 
of sandwich composite structures with defects 
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The purpose of this research was to develop a multilevel model for multiscale defor-
mation of three-layer (sandwich) structures made of polymeric composite materials such 
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as plates with a foam based filler. We took into account the micromechanical processes 
of deformation and damageability in the matrix and reinforcing filler and foam, as well 
as macroscopic defects such as non-impregnation of the composite skins. First, we did 
a finite element modeling of stress-strain state, damageability and destruction of the 
sandwich plates with skins made of hybrid carbon fiber composites, with different types 
of defect such as non-impregnation, under the flexural uniform pressure. Then we found 
the characteristic features of the deformation and damageability process in this type of 
composite structures. Finally, we developed a method which can be used to calculate the 
deformation, damageability and destruction of sandwich plates made of polymer compo-
site materials applied in various industries: shipbuilding, aviation, rocketry. 
 
Keywords: sandwich structures, polymer composite materials, multiscale modeling, de-
fects, finite element method, layered fiber composites, monofilaments, damageability. 
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