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УДК 539.3 

Асимптотическая теория конструктивно-ортотропных 

пластин с двухпериодической структурой 

© Ю.И. Димитриенко, Е.А. Губарева, С.В. Сборщиков 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

Предложена теория тонких конструктивно-ортотропных пластин, обладающих 
двухпериодической структурой, примером которых являются сотовые многослой-
ные панели и подкрепленные пластины. Теория построена на основе уравнений об-
щей трехмерной теории упругости путем с помощью асимптотических разложе-
ний по малому параметру, представляющему отношение толщины пластины к 
характерной длине, без введения каких-либо гипотез относительно характера рас-
пределения перемещений и напряжений по толщине. Сформулированы локальные 
задачи для нахождения напряжений во всех конструктивных элементах пластины. 
Показано, что полученные глобальные (осредненные по определенным правилам) 
уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява,  
но отличаются от них наличием третьего порядка производных от продольных пе-
ремещений. Предложенный метод позволяет вычислить все  шесть компонент тен-
зора напряжений, включая поперечные нормальные напряжения и напряжения меж-
слойного сдвига, для этого необходимо численно решить локальные задачи до 
третьего приближения включительно. Приведен пример конечно-элементного ре-
шения локальных задач нулевого приближения для сотовой конструкции, который 
показал, что разработанный метод расчета пластин и его численная реализация 
достаточно эффективны, они позволяют проводить расчеты для сложных конст-
руктивно-ортотропных пластин с сильно различающимися значениями упругих ха-
рактеристик.  

Ключевые слова: многослойные пластины, двухпериодические структуры, много-
слойные сотовые панели, асимптотические разложения, локальные задачи. 

  

Введение. Благодаря снижению размерности двумерные задачи 

теории упругих пластин и оболочек имеют определенные преимуще-

ства перед трехмерными задачами теории упругости в точной поста-

новке: упрощение топологии и размерности конечно-элементных се-

ток, необходимых для численного решения задач, а также сокращение 

времени численного расчета. Однако платой за это сокращение явля-

ется уменьшение точности получаемого решения,  главным образом, 

для «слабых» напряжений — напряжений межслойного сдвига и попе-

речных напряжений. Для многих задач именно эти напряжения играют 

наиболее важную роль при проектировании тонкостенных конструк-

ций. В частности, при расчете прочности тонкостенных конструкций 

из многослойных композиционных материалов, а также сотовых трех-

слойных конструкций, подкрепленных, сетчатых, обычно называемых 

конструктивно-ортотропными конструкциями (КОК), очень важно 

определить напряженное состояние в отдельных их компонентах, на-

пример напряжения отрыва обшивок от сотового заполнителя, сдвиго-

вые напряжения в сотовом заполнителе и т. п. Расчет этих напряже-

 



Асимптотическая теория конструктивно-ортотропных пластин… 

37 

ний в общей трехмерной постановке задачи теории упругости крайне 

затруднителен, поэтому существует потребность в разработке уточ-

ненных методов теории тонких конструктивно-ортотропных пластин и 

оболочек. Таких методов достаточно много; не претендуя на полноту 

списка, отметим лишь некоторые исследования в этой области [1–9].  

Сравнительно недавно появились работы [2, 3], в которых пред-

ложены теории тонких пластин и оболочек с двумерной микрострук-

турой — сотовыми, сетчатыми конструкциями, основанные на ис-

пользовании метода асимптотического осреднения (метода гомоге-

низации — МГ), хорошо зарекомендовавшего себя при осреднении 

композитов с трехмерной периодической структурой [10–19]. При-

менение МГ для двумерных структур вызывает определенные слож-

ности: двумерная задача осреднения не является частным случаем 

общей трехмерной задачи, поскольку двумерные пластины и оболоч-

ки сохраняют «третью» координату, но не обладают по ней перио-

дической структурой. В работах [2, 3] был предложен вариант  

МГ для тонких пластин, в котором использовалось допущение о ли-

нейном характере распределения по толщине пластины главных чле-

нов асимптотического ряда для перемещений, что позволило полу-

чить систему уравнений типа уравнений Кирхгофа – Лява. В статьях 

[20, 21] был разработан вариант МГ для тонких многослойных пла-

стин, в котором не делалось предположение о линейности распреде-

ления перемещений. Было показано, что для многослойных пластин 

такое линейное распределение отсутствует, а имеет место аналог ги-

потезы ломаной линии, используемой в теории Григолюка – Кулико-

ва [1]. В работе [21] было проведено численное сравнение результа-

тов расчетов по этой теории с результатами, полученными по 

трехмерной теории упругости при использовании очень мелких ко-

нечно-элементных сеток, и показана очень высокая точность разра-

ботанного варианта МГ.  

 Целью данной работы является 

дальнейшее развитие предложенного в 

[20] варианта МГ для случая конструк-

тивно-ортотопных пластин с двумерной 

структурой периодичности (двухперио-

дической структурой).  

 Основные допущения. Рассмот-

рим пластину (рис. 1) постоянной тол-

щины, обладающую двухпериодиче-

ской структурой (ДПС). В качестве 

примера ДПС могут выступать сотовые 

структуры, подкрепленные, вафельные 

и другие типы КОК.  

Рис. 1. Конструктивно-орто-
тропная пластина с двухперио- 
        дической структурой  
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Введем малый параметр / 1h L   как отношение толщины 

пластины h к характерному размеру всей пластины L (например, к ее 

максимальной длине). Введем также глобальные kx  и локальные i

координаты:  

  / ,k kx x L  / ,i ix      k, i = 1, 2, 3,  (1) 

где 
kx  — обычные декартовы координаты, ориентированные таким 

образом, что ось 
3Ox направлена по нормали к внешней и внутренней 

плоскостям пластины, а оси 
1Ox и 

2Ox  принадлежат срединной 

плоскости пластины. Обозначим также 3 .    Здесь и далее индексы, 

обозначенные прописными буквами , , , ,I J K L  принимают значения 

1, 2, а индексы , , ,i j k l  — значения 1, 2, 3. Ячейка двумерной пе-

риодичности (ЯП) пластины в координатах 
kx имеет размеры ,ka  а  

локальные координаты для ЯП изменяются в диапазонах 

/2 /2,i i ia a     где / ,i ia a h  а 3 .a h  Полагаем, что существует 

два масштаба изменения перемещений КОК :ku  один соответствует 

продольным направлениям 
1 ,Ox 2,Ox  второй — поперечному на-

правлению 
3 .Ox  Координаты 

kx и ,i  как обычно в методе асимпто-

тического осреднения [10–12], рассматриваются как независимые пе-
ременные. 

 Рассмотрим для КОК трехмерную задачу линейной теории упру-

гости, состоящую из уравнений равновесия, соотношений Коши, 

обобщенного закона Гука, граничных условий на внешней и внут-

ренней поверхностях пластины 3  (их уравнение имеет вид 

3 /2x h  ) и торцевой поверхности T , а также из граничных усло-

вий на поверхности контакта S ([ ]iu  — скачок функций):  

 

 

 3

3
3

0,      

1
,

2

, ,

: , : ,

: [ ] 0, [ ] 0.

j ij

ij j i i j

ij ijkl I kl

ij j i T i ei

S ij j i

u u

C

n p n u u

n u

 

  

   

    

     

   

  (2) 

Здесь ij  —  компоненты тензора напряжений; ij  — компоненты 

тензора деформаций; ju  — компоненты вектора перемещений; 

/j jx     — оператор дифференцирования по декартовым коорди-
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натам; 3( , )ijkl IC    — компоненты тензора модулей упругости, кото-

рый полагается зависящим от локальных координат ,m  причем по 

координатам , 1, 2I I   тензор 3( , )ijkl IC   обладает периодичностью: 

3 3( , ) ( , )ijkl I ijkl I I IC C n a      , где In  — целые числа.   

Примем основное допущение [20], состоящее в том, что давление 

p  на внешней и внутренней поверхностях пластины имеет порядок 

малости 3( )O   (т. е. 3p p   ). Это допущение, как правило, соот-

ветствует реальным условиям нагружения тонких пластин. Никакого 

специального допущения об анизотропии материалов слоев пока не 

делаем, т. е. тензоры модулей упругости имеют по 21 независимой 

компоненте [15].  

 Асимптотические разложения для упругой КОК. Задача (2) 

содержит малый параметр   в граничных условиях (это коэффици-

ент при давлении), поэтому ее решение будем искать в виде асимпто-

тических разложений по параметру   в виде функций, зависящих от 

глобальных и локальной координат:  

 (0) (1) 2 (2)
3 3( ) ( , , ) ( , , )k k I k I I k I Iu u x u x u x           

 3 (3)
3( , , ) ...k I Iu x       (3) 

 Подставим разложения (3) в соотношения Коши в системе (2),  

используя при этом правила дифференцирования функций локальных 

координат  [10–12] ( / / (1/ ) / ).j j jx x         Тогда получим асим-

птотическое разложение для деформаций  

  (0) (1) 2 (2) ...ij ij ij ij           (4) 

В разложении (4)  

  
   ( ) ( ) ( 1) ( 1) ( ) ( ) ( 1) ( 1)

/ / 3 3 /3 3/

( ) ( 1)
33 3/3

1 1
, ,

2 2

,

m m m m m m m m
IJ IJ I J J I I I I I

m m

e u u e u u

u

   



       

 

   

  ( ) ( ) ( ) ( ) ( ) ( )
, , 3 3, 33

1 1
, , 0, 0, 1, 2, ... ,

2 2

m m m m m m
IJ I J J I I Ie u u e u e m      (5) 

здесь обозначены производные по локальным координатам (1)
/i ju   

(1) /i ju   и по глобальным координатам (1) (1)
, / .i J i Ju u x    

 Подставляя выражение (4) в закон Гука в системе (2), получаем 

асимптотическое разложение для напряжений  

  (0) (1) 2 (2) ... ,ij ij ij ij          (6)  
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где  

  ( ) ( ) ,m m
ij ijkl klC    0, 1, 2, ... ,m    (7) 

 Формулировка локальных задач. Подставляя разложения (3), 

(4), (6) в уравнения равновесия и граничные условия системы (2), по-

лучаем  

      

     (0) (0) (1) (1) (2) 2 (2) (3)
/ , / , / , /

(0) (1) 2 (2) 3
3 3 3 3 3

(0) (1) 2 (2) 3 (3)

1
... 0,

: ... ,

: ... .

ij j iJ J ij j iJ J ij j iJ J ij j

i i i i

T i i i i i ei

p

u u u u u u

 

             


          

         

  (8) 

Приравнивая в уравнениях равновесия члены при 1 к нулю, а при 

остальных степенях от   к некоторым величинам (0) (1) (2), , ,i i ih h h  не 

зависящим от ,l  получаем рекуррентную последовательность ло-

кальных задач:  
 для нулевого приближения  

 

(0)
/

(0) (0)

(0) (0) (1) (1)
/ /

(0)
3 3

(0) (1)

(0) (1) (1)

0,

,

1
 ( ),  

2

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0; 0;

ij j

ij ijkl kl

ij ij i j j i

i

S ij j i

ij j i i

C

e u u

n u

n u u



 

  

   

  

   

   

  (9) 

 для первого приближения 

 

(1) (0) (0)
/ ,

(1) (1)

(1) (1) (2) (2)
/ /

(1)
3 3

(1) (2)

(1) (2) (2)

,

,

1
 ( ),  

2

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0; 0;

ij j iJ J i

ij ijkl kl

ij ij i j j i

i

S ij j i

ij j i i

h

C

e u u

n u

n u u



  

  

   

  

   

   

  (10) 
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 для второго приближения 

 
 

(2) (1) (1)
/ ,

(2) (2)

(2) (2) (3) (3)
/ /

(2)
3 3

(2) (3)

(2) (3) (3)

,

,

1
,

2

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0, 0;

ij j iJ J i

ij ijkl kl

ij ij i j j i

i

S ij j i

ij j i i

h

C

e u u

n u

n u u



  

  

   

  

   

   

  (11) 

 для третьего приближения 

 

 

 

(3) (2) (2)
/ ,

(3) (3) (3)
3 3

(3) (3) (4) (4)
/ /

(3) (3) (4) (4) (3) (4)
3 3 /3 3/ 33 3/3
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3 3 3

(3) (4)

(3)

,

,

1
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2

1
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2
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: [ ] 0, [ ] 0,

[[ ]] 0, [[

ij j iJ J i

ij ijKL KL ijk k

IJ IJ I J J I

I I I I

i i

S ij j i

ij j i

h

C C

e u u

e u u u

p

n u

n u

 

  

    

   

     

    

   

  (4) (4)]] 0, 0
iu 

  
(12)

 

и т. д. Здесь обозначены операция осреднения по толщине и по ЯП 

пластины 

  
1 2

1 2

/2 /20,5

( )( ) ( ) ( )
1 2

0,5 /2 /2

, ,

a a

mm m m
ii i i

a a

d u d du u u
  

         (13) 

а также условия двумерной периодичности  

 

( ) ( ) ( )1 1
2 3 2 3

( ) ( )2 2
1 3 1 3

[[ ]] 0 , , , , , , ,
2 2

, , , , , , .
2 2

m m m
i i I i I

m m
i I i I

a a
u u x u x

a a
u x u x

    
           

   

   
         

   

  

Уравнения равновесия (8) после введения функций (0) (1) (2), , ,i i ih h h  

принимают вид 

  (0) (1) 2 (2) ... 0.i i ih h h       (14) 
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 Решением локальной задачи нулевого приближения (9) являются 

функции (1) (0) (0), , ,j kl iju    они зависят от локальных координат l  и 

входных данных этой задачи — перемещений (0)( ).j Iu x  Решением за-

дачи (10) являются функции (2) (1) (1), , ,j kl iju    а (1) (0) (0), ,j kl iju    в этой зада-

че — входные данные. В задаче (11) функции (3) (2) (2), ,j kl iju    — неиз-

вестные, а (2) (1) (1), ,j kl iju    — входные данные и т. д.  

 Выражения для функций ( )m

ih . Проинтегрируем уравнения 

равновесия в системах (10)–(12) вместе с граничными условиями на 
0,5,    в результате получим: 

   (1) (0) (1) (0)
3 , /

0,5

( 0,5),i iJ J iJ J id h





          (15) 

   (2) (1) (2) (1)
3 , /

0,5

( 0,5),i iJ J iJ J id h





          (16) 

   (3) (2) (3) (2)
3 3 , /

0,5

( 0,5).i i iJ J iJ J ip d h







           (17)  

 Учтем теперь, что напряжения (1) (2) (3)
3 3 3, ,i i i   , являющиеся ре-

шениями задач (10)–(12), удовлетворяют граничным условиям 
(1) (2) (3)
3 3 30, 0,i i i p        на внешней поверхности при 0,5.   То-

гда, записывая соотношения (15)–(17) при 0,5   и затем интегри-

руя по ЯП, получим уравнения для вычисления функций 
(0) (1) (2), , :i i ih h h  

  

0,5

(0) (0) (1)
, /

0,5

,i i J J iJ J
h d



      (18) 

  

0,5

(1) (1) (2)
, /

0,5

,i i J J i J Jh d


      (19) 

  

0,5

(2) (2) (3)
3, /

0,5

, .i ii J J i J Jh d p p p p 



          (20)  

 Поскольку функции ( ) ,m
i J  являющиеся решением задачи (10), 

удовлетворяют условиям периодичности на границах ЯП, то  

 

 
1 2 2

1 2 2

1

1

/2 /2 /2

( ) ( ) ( ) ( )1 1( )
1/1 2/2 1 2 1 1 2/

/2 /2 /2

/2

( ) ( )2 2
2 2 1

/2

2 2

0.
2 2

a a a

m m m mm
i i i ii J J

a a a

a

m m
i i

a

a a
d d d

a a
d

  



    
               

    

    
         

    

  


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В результате получаем, что  

  
(0) (0)

, ,i i J Jh     (21) 

  
(1) (1)

, ,i i J Jh     (22) 

  
(2) (2)

3, .i ii J Jh p     (23)  

 Формальное решение локальных задач. Формальное решение 

задачи (9) можно представить в виде линейной тензорной функции от 

входных данных задачи 

  (1) (1) (0)( ) ( ),i ipq m pq Iu N e x    (24) 

где (1)( )ipq mN   — функции только локальных координат, являющиеся 

решением следующей задачи: 

 

(0)
( )/

(0) (1)
( ) /

(0)
3 3( )

(0) (1)
( )

(0) (1) (1)
( )

0,

,  

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0, 0,

ij pq j

ij pq ijpq ijkl kpq l

i pq

S ij pq j ipq

ij pq j ipq ipq

C C N

n N

n N N



 

  

  

   

   

  (25)  

причем напряжения (0)
ij вычисляются по формулам 

  (0) (0) (0)
( ) .ij ij pq pqe     (26) 

Подставляя (24) в (5), вычисляем деформации (1):ije  

     (1) (1) (0) (1) (0) (1) (1) (0)
, , ,

1 1
.

2 2
ij ikl kl j jkl kl i ikl mj jkl mi kl me N e N e N N e        (27)  

 Тогда решение задачи (10) первого приближения можно пред-

ставить в виде линейных функций от (0)
, :pq re  

  (2) (2) (0)
,( ) ,i ipqr m pq ru N e    (28) 

где (2) ( )ipqr mN   — функции только локальных координат, являющиеся 

решением задачи 

 

(1) (0) (0)
( )/ ( ) ( )

(1) (1) (2)
( ) /

(1)
3 3( )

(1) (2)
( )

(1) (2) (2)
( )

,

,  

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0, 0.

ij pqr j ir pq ir pq

ij pqr ijkr kpq ijkl kpqr l

i pqr

S ij pqr j ipqr

ij pqr j ipqr ipqr

C N C N

n N

n N N



   

  

  

   

   

  (29)  
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 Напряжения (1)
ij вычисляются по формулам 

  
(1) (1) (0)

( ) , .ij ij pqr pq re     (30) 

 Решение задачи (11) второго приближения можно представить в 

виде линейных функций от 
(0)

, :pq rte  

  
(3) (3) (0)

,( ) ,i ipqrt m pq rtu N e    (31) 

где (3) ( )ipqrt mN   — функции только локальных координат, являющиеся 

решением задачи 

 

(2) (1) (1)
( )/ ( ) ( )

(2) (2) (3)
( ) /

(2)
3 3( )

(2) (3)
( )

(2) (3) (3)
( )

,

,  

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0, 0.

ij pqrt j it pqr it pqr

ij pqrt ijkt kpqr ijkl kpqrt l

i pqrt

S ij pqrt j ipqrt

ij pqrt j ipqrt ipqrt

C N C N

n N

n N N



   

  

  

   

   

  (32)  

Напряжения (2)
ij вычисляются по формулам 

  
(2) (2) (0)

( ) , .ij ij pqrt pq rte     (33) 

 Решение задачи (12) третьего приближения можно представить в 

виде линейных функций от 
(0)

,pq rtue  и p , :p  

  
(4) (4) (0)

,( ) ,i ipqrtu m pq rtu i iu N e O p O p 
       (34)  

где (4) ( )ipqrtu mN  , ,i iO O   — функции только локальных координат, яв-

ляющиеся решением задач 

 

(3) (2) (2)
( )/ ( ) ( )

(3) (3) (4)
( ) /

(3)
3 3( )

(3) (4)
( )

(3) (4) (4)
( )

,

,  

: 0,

: [ ] 0, [ ] 0,

[[ ]] 0, [[ ]] 0, 0

ij pqrtu j iu pqrt iu pqrt

ij pqrtu ijku kpqrt ijkl kpqrtu l

i pqrtu

S ij pqrtu j ipqrtu

ij pqrtu j ipqrtu ipqrtu

C N C N

n N

n N N



   

  

  

   

   

  (35) 

и 

 

(3)
/

(3)
/

(3)
3 3 3

(3)

(3)

0,

,  

: ,

: [ ] 0, [ ] 0,

[ ] 0, [ ] 0, 0.

ij j

ij ijkl k l

i i

S ij j k

ij j k k

C O

p

n O

n O O






  




 


 

 

    

   

         

  (36)  
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Напряжения (3)
ij вычисляются по формулам 

  
(3) (3) (0) (3) (3)

( ) , .ij ij pqrtu pq rtu ij ije p p          (37)  

 Осредненные уравнения равновесия многослойных пластин. 
Подставляя выражения (21)–(23) в асимптотическое разложение (14) 

уравнений равновесия, получим осредненные уравнения равновесия 

пластины 

   (0) (1) 2 (2)
, , , 3 ... 0.iJ J iJ J iJ J ip             (38) 

 Домножим исходные уравнения равновесия системы (8) при i = I 

на   и применим к ним операцию осреднения (13). Тогда, учитывая, 

что (0)
/ 0,ij j   получим следующее вспомогательное уравнение:  

     (0) (1) 2 (1) (2)
, 3 , 3 ... 0,IJ J I IJ J I            (39) 

Здесь учтено, что 

 

0,5

(1) (1) (1) (1)
/ / 3/3 3

0,5

,ij j iJ J i id


          
(2) (2)

/ 3ij j i    .  

так как на (1)
3 3: 0i    и (2)

3 0.i   

 Введем обозначения для усилий ,IJT  моментов IJM  и перерезы-

вающих сил IQ в пластине 

  

(0) (1)

(0) 2 (1)

(0) (1) 2 (2)
3 3 3

...,

...,

... .

IJ IJ IJ

IJ IJ IJ

I I I I

T

M

Q

     

      

        

   (40)  

Тогда уравнения (38), (39) можно записать в традиционном виде 

уравнений равновесия и уравнений моментов 

  , 0,IJ JT    , 0,IJ J IM Q    , .I IQ p     (41) 

Это и есть искомые осредненные уравнения равновесия многослой-

ной пластины, здесь обозначено 2 .p p      

Осредненные определяющие соотношения. Подставляя выра-

жения (26), (30) для напряжений (0)
IJ , (1)

IJ в интегралы формул (40) и 

удерживая только те старшие члены разложений, которые указаны в 

этих формулах (40), получаем 

  
(0) (0) (0) (0)

3 , 3, ,IJ IJPQ PQ IJP P IJPQM PQ M IJPM P MT C e C e K e K e      (42) 
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  (0) (0) (0) (0)
3 , 3, ,IJ IJPQ PQ IJP P IJPQM PQ M IJPM P MM B e B e D e D e      (43) 

  
(0) (0) (0) (0) 2 (2)

3 , 3, 3 .I IPQ PQ IP P IPQM PQ M IPM P M IQ L e L e J e J e         (44) 

где обозначены тензоры осредненных упругих констант композитной 

пластины  

(0)
( ) ,IJPQ IJ PQC     

(0)
( 3) ,IJP IJ PC     

(1)
( ) ,IJPQM IJ PQMK      

(1)
( 3 ) ,IJPM IJ P MK     

(0)
( ) ,IJPQ IJ PQB     

(0)
( 3) ,IJP IJ PB        

(45)
 

2 (1)
( )IJPQM IJ PQMD    ,  

2 (1)
( 3 ) ,IJPM IJ P MD     

(0)
3( ) ,IPQ I PQL     

(0)
3( 3) ,IP I PL      

(1)
3( ) ,IPQM I PQMJ      

(1)
3( 3 ) .IPM I P MJ     

Осредненные кинематические соотношения. В систему осред-

ненных определяющих соотношений (42)–(44) входят деформации 

срединной поверхности (0) ,IJe  углы поворота нормали к срединной 

поверхности (0)
3 ,P Pe   кривизны (0)

3,PM P Me   и градиенты деформа-

ций (0)
, ,KL Ne  которые зависят от функций (0) ,Iu  (0)

3u  глобальных пере-

менных ,Ix  

  

 

 

(0) (0) (0)
, ,

(0) (0)
3 3,

(0) (0)
3, 3,

(0) (0) (0)
, , ,

1
,

2

1
,

2

1
,

2

1
.

2

IJ I J J I

P P P

PM P M PM

KL N K LN L KN

e u u

e u

e u

e u u

 

  

  

 

  (46) 

 Осредненная система уравнений для пластин. Подставляя да-

лее выражения (46) и (42)–(44) в систему (41), получаем систему трех 

уравнений (после исключения из них IQ ) относительно трех неиз-

вестных функций (0) ,Iu  (0)
3u  

  

(0) (0) (0) (0)

, 3, , 3,

(0) (0) (0) (0)

, 3, , 3,

0,

.

IJPQ P QJ IJP PJ IJPQM P QMJ IJPM PMJ

IJPQ P QJI IJP PJI IJPQM P QMJI IJPM PMJI

C u C u K u K u

B u B u D u D u p

   

    
  (47)  
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Эта система имеет четвертый порядок относительно прогиба (0)
3 ,u  

как в классической теории пластин Кирхгофа – Лява, и третий поря-

док производных относительно продольных перемещений (0) ,Iu  чем 

отличается от теории Кирхгофа – Лява.  

 Вычисление эффективных характеристик пластины. Эффек-

тивные упругие характеристики пластины ,IJPQC ,IJPC ,IJPQMK ,IJPMK

,IJPQB ,IJPB ,IJPQMD IJPMD — тензоры, входящие в определяющие соот-

ношения (42), (43), вычисляются по формулам (45). Предварительно 

должны быть решены локальные задачи нулевого и первого уровней, 

с помощью которых вычисляем поля тензоров (0)
( )ij pq и (1)

( ).ij pqr   

 Напряжения в пластине. После решения осредненной системы 

уравнений (47) можно вычислить поля напряжений в пластине, для 

этого используем формулы (6), (26). При этом для напряжений IJ  

достаточно сохранить лишь члены нулевого и первого приближений, 

для сдвиговых напряжений 3I  необходимо сохранить члены до вто-

рого порядка точности, а для поперечного напряжения 33  — члены 

до третьего порядка точности включительно: 

 

(0) (0) (1) (0)
( ) ( ) ,

(0) (0) (1) (0) 2 (2) (0)
3 3( ) 3( ) , 3( ) ,

(0) (0) (1) (0) 2 (2) (0)
33 33( ) 33( ) , 33( ) ,

3 (3) (0)
33( ) ,

,

,

IJ IJ pq pq IJ pqr pq r

I I pq pq I pqr pq r I pqrt pq rt

pq pq pqr pq r pqrt pq rt

pqrtu pq rtu

e e

e e e

e e e

e

    

       

        

   (3) (3)
33 33 .p p    

  (48)  

Алгоритм численного решения локальных задач. Для реше-

ния локальных задач нулевого приближения (25) примéним вариант 

метода конечного элемента, разработанный в [14–19]. Решение этих 

задач на ЯП строится как продолжение решения задач на части ЯП 

:V  для ЯП, периодической по трем координатным направлениям,  

V  — это 1/8 ЯП, а для ЯП, периодической по двум направлениям,  

V  — это 1/4 ЯП, т. е. 1 2
1 2 3

1 1
0 , 0 ,

2 2 2 2

a a
V

 
           
 

.  

Решение (1)
3( , )kpq IN   задачи (25) в V  ищем в виде  

  (1) (1)
3 3

1
( , ) ( ) ( , ),

2
kpq I kp q kq p kpq IN N             (49)  

где (1)
3( , )kpq IN    — функции, удовлетворяющие краевой задаче тео-

рии упругости на V  
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(0)
( )/

(0) (1)
( ) /

(0)
3 3( )

(0) (1)
( )

0,

,  

: 0,

: [ ] 0, [ ] 0.

ij pq j

ij pq ijkl kpq l

i pq

S ij pq j ipq

C N

n N



 

 

  

   

  (50) 

 Система (50) дополняется специальными граничными условиями 

на торцевых поверхностях { 0,5}s s      1/4 ЯП: 

 

( ) ( )/

( )/ ( )

( ) ( )/

( )

( )/ ( )/ ( )

1
на : , 0, ,

2

на : 0, 0, , , 1, 2,

1
на : , 0,

4

0, , , { , },

на : 0, 0, 0, , .

p p pp i pp p

q i pp q q pp

j i pq ip j pq j

k pq

k i pq k j pq k k pq

U U i p

U U i p q p q

U U

U i j k i i j p q

U U U i j k i p q

   

     

   

    

       

 (51) 

  

Граничные условия на плоскостях симметрии { 0}s s     име-

ют вид, аналогичный соотношениям (51), в которых следует поло-

жить ( ) 0,p ppU   ( ) 0.i pqU   Задачи (50), (51) назовем локальными за-

дачами Lpq. В отличие от аналогичных трехмерных локальных задач, 

число которых равно 6 [13–16], для двумерной ЯП число этих задач с 

ненулевым решением равно 5, так как задача L33 имеет тождественно 

нулевое решение. Кроме того, в отличие от трехмерных задач Lpq 

граничные условия на поверхностях 3 3{ 0,5}      соответствуют 

свободным от нагрузок поверхностям. 

 Для определения компонент тензора эффективных модулей уп-

ругости композита ijpqC  используем формулы (45). После расчета 

тензора модулей упругости ijpqC  рассчитывается эффективный тензор 

упругих податливостей ,ijpq  являющийся обратным к .ijpqC  В ре-

зультате находим девять технических упругих констант композита: 

1/E    — эффективные модули Юнга; E      — эф-

фективные коэффициенты Пуассона; G C   — эффективные 

модули сдвига. 

 Тензоры концентрации напряжений. Выделим в выражениях 

(48) для напряжений IJ и 3I  члены при нулевой степени :  

  0 (0) (0)
( ) ,IJ IJ pq pqe     0 (0) (0)

3 3( ) .I I pq pqe     (52)  
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Эти выражения характеризуют напряженное состояние в компонен-

тах пластины, вызванное продольным растяжением (описывается 

компонентами (0) (0)
11 22, ),e e  продольным сдвигом (описывается компо-

нентой (0)
12 )e  и межслоевыми сдвигами (описывается компонентами 

(0) (0)
13 23, ).e e  Члены в (48) при первой степени   характеризуют напря-

женное состояние, вызванное изгибом пластины.  

Выделим подобным образом в (42), (44) части усилий и перере-

зывающих сил, вызванные растяжением, продольным и межслоевы-

ми сдвигами: 

  0 (0) (0)
3 ,IJ IJPQ PQ IJP PT C e C e      0 (0) (0)

3 .I IPQ PQ IP PQ L e L e    (53) 

 Формулы, обратные к (53), имеют следующий вид: 

  (0) 0 0 ,PQ PQIJ IJ PQI Ie R T R Q     (0) 0 0
3 ,P PIJ IJ PI Ie R T R Q    (54)  

где 

  
 

1
1 1

1 1 1 1

, ,

, .

PQIJ IJPQ IJM MN NPQ PQI PQMN MNJ JI

PI PI PJ JKQ KQMN MNS SI PIJ PS SKQ KQIJ

R C C L L R R C L

R L L L R C L R L L R


 

   

  

  
   (55) 

С помощью формул (52) и (54) можно связать пять напряжений 0
IJ  и 

0
3I  с пятью компонентами 0 ,PQT  0:PQ  

  0 0 0 ,IJ IJPQ PQ IJP PB T B Q       0 0 0
3 ,I IPQ PQ IP PB T B Q     (56) 

где обозначены компоненты тензоров концентрации напряжений  

  

(0) (0)
( ) ( 3)

(0) (0)
( ) ( 3)

(0) (0)
3( ) 3( 3)

(0) (0)
3( ) 3( 3)

,

,

,

.

IJPQ IJ MN MNPQ IJ M MPQ

IJP IJ MN MNP IJ M MP

IPQ I MN MNPQ I M MPQ

IP I MN MNP I M MP

B R R

B R R

B R R

B R R

  

  

  

  

    (57) 

 Результаты численного моделирования. По разработанному 

методу были проведены серии численных расчетов микронапряже-

ний и эффективных упруго-прочностных характеристик конструк-

тивно-ортотропной пластины, имеющей структуру сотового заполни-

теля, материал сот которого образован стеклотканью (см. рис. 1). 

В расчетах параметрически изменялся размер ячейки сот, харак-

теризуемый коэффициентом 21 (1 / )S Sh a    — содержанием сте-

нок сот в общем объеме одной ячейки соты (где Sh  — толщина стен-

ки сот; a — длина стороны одной ячейки соты). Были рассмотрены 
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значения S  в широком диапазоне — от 0,02 до 0,9. Материал стенки 

сот — квазитрансверсально-изотропный [22, 23] тканевый стекло-

пластик (свойства стеклопластика по основе и утку совпадают) эпок-

сифенольного типа со следующими характеристиками: 

 nE  = 9,078 ГПа, E  = 25,394 ГПа, n  = 0,169,  

  = 0,114, nG  = 2,205 ГПа, G  = 3,253 ГПа,  

где nE  — модуль упругости в направлении, поперечном к слоям ткани; 

E  — модуль упругости в плоскости ткани; n  — поперечный коэф-

фициент Пуассона;   — продольный коэффициент Пуассона, nG  — 

поперечный модуль сдвига; G  — модуль сдвига в плоскости ткани.  

Главные оси h
iО трансверсальной изотропии материала стенки сот 

ориентированы по направлениям самого сотового заполнителя, причем 

3 3.
hО О    С помощью упругих характеристик ,nE  ,E  ,n  ,  ,nG  

G  вычислялись компоненты тензора упругих податливостей h
ijkl со-

тового заполнителя в системе координат h
iО , далее определялись ком-

поненты тензора модулей упругости 1( )h h
ijkl ijklC    в системе координат 

,h
iО  а затем рассчитывались компоненты этого тензора ( )ijkl IC  в сис-

теме координат iО , повернутой от-

носительно осей h
iО .  

 На рис. 2 показана конечно-эле-

ментная сетка, использованная при 

численном решении локальных задач. 

Сетка строилась как для самого сотово-

го заполнителя, так и для фиктивного 

материала, заполняющего поры конст-

рукции. На рис. 3 представлены карти-

ны распределения некоторых коэффи-

циентов концентрации напряжений 

IJPQB  и ,IPB  рассчитанные с помощью 

разработанного метода, для сотового 

заполнителя со значением параметра 

S = 0,1. Максимальные по абсолют-

ной величине значения коэффициентов 

концентрации достигаются в зонах искривления сотового заполнителя, 

эти же зоны являются наиболее опасными с точки зрения нарушения 

прочности заполнителя при продольном растяжении-сжатии или про-

дольном сдвиге конструктивно-ортотропной пластины. 

Рис. 2. Конечно-элементная сетка 
для ЯП конструктивно-ортотроп-
ной пластины с сотовым заполни- 
                       телем  
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Рис. 3. Картины распределения коэффициентов концентрации напряжений 

1111B  (a), 1212B  (б), 2222B  (в) и 22B  (г) в ЯП конструктивно-ортотропной пла- 
                стины из стеклопластикового сотового заполнителя с S = 0,1 

По разработанной методике получены следующие значения эф-

фективных упругих характеристик сотового заполнителя на ос-

нове стеклоткани с коэффициентом :0,1 
S

 

Модуль упругости, МПа 

1E  (в плоскости заполнителя) ...............................  34,345 

2E  (в плоскости заполнителя) ...............................  34,346 

3E  (поперечный) ....................................................  2540,09 
Коэффициент Пуассона: 

12  (продольный) ...................................................  0,9739 

13  (поперечный) ....................................................  0,0017 

23  (поперечный) ...................................................  0,0017 

21  (продольный) ...................................................  0,9739 

31  (поперечный) ...................................................  0,1239 

32  (поперечный) ...................................................  0,1239 
Модуль сдвига, МПа: 

12G  ............................................................................  8,699 

13G  ............................................................................  169,387 

23G  ............................................................................  169,386 
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Результаты расчетов показывают, что эффективные упругие мо-

дули сотового заполнителя в плоскости заполнителя и в поперечном 

направлении, а также модули сдвига 
12G  и 3IG  различаются почти на 

два порядка, также существенно различаются продольные и попереч-

ные коэффициенты Пуассона 12  и 13, 23:  значения коэффициента 

12 близки к единице, а значения 13, 23  — к нулю. Разработанный 

вычислительный метод позволяет рассчитывать эффективные харак-

теристики конструктивно-ортотропных пластин с существенно раз-

личными значениями характеристик по разным направлениям. 

Выводы. Предложена асимптотическая теория тонких конструк-

тивно-ортотропных пластин, обладающих двухпериодической струк-

турой. Теория основана на выводе уравнений теории пластин из об-

щих уравнений трехмерной теории упругости с помощью асимпто-

тических разложений по малому параметру, представляющему собой 

отношение толщины пластины к характерной длине, без введения 

каких-либо гипотез относительно характера распределения переме-

щений и напряжений по толщине.  

 Выведены рекуррентные последовательности локальных задач 

для нахождения напряжений во всех конструктивных элементах пла-

стины. Показано, что глобальная задача теории изгиба пластин близ-

ка к задаче изгиба пластин Кирхгофа – Лява, но отличается от нее 

наличием третьего порядка производных от продольных перемеще-

ний пластины. Предложенный метод позволяет вычислить все шесть 

компонент тензора напряжений, включая поперечные нормальные 

напряжения и напряжения межслойного сдвига. 

Пример конечно-элементного решения локальных задач нулевого 

приближения для сотовой конструкции показал, что разработанный 

метод расчета пластин и его численная реализация достаточно эф-

фективны. Они позволяют проводить расчеты для сложных конст-

руктивно-ортотропных пластин с сильно различающимися значения-

ми упругих характеристик.  
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Asymptotic theory of constructive-orthotropic plates  

with two-periodic structures 

© Yu.I. Dimitrienko, E.A. Gubareva, S.V. Sborschikov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

The theory of thin constructive-orthotropic plates with a two-periodic structure was sug-

gested.  Examples of such structures are honeycomb sandwich panels and backed plates. 

The theory is based on equations of a three-dimensional elasticity theory with the help of 

asymptotic expansions in terms of a small parameter being the ratio of a plate thickness 

and a characteristic length without introducing any hypotheses on a distribution charac-

ter for displacements and stresses through the thickness. Local problems were formulated 

for finding stresses in all structural elements of a plate. It was shown that the global (av-

eraged by the certain rules) equations of the plate theory are similar to equations of the 
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Kirchhoff-Love  plate theory, but they differs by a presence of three-order derivatives of 

longitudinal displacements.  The method developed allows to calculate all 6 components 

of the stress tensor including transverse normal stresses and stresses of interlayer shear. 

For this, local problems should be solved numerically up to the third approximation.  The 

example was demonstrated for finite-element solving the local problems of the zero ap-

proximation for a cellular structure, which showed that the developed method for plate 

calculation and its numerical realization are sufficiently effective - they allow us to con-

duct computations for complex constructive-orthotropic plates with very different values 

of elastic characteristics.             

 

Keywords: multilayer plates, two-periodic structure, honeycomb sandwich panels con-

structive-orthotropic plates, two-periodic structure, asymptotic expansions, local prob-

lems. 
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