Методы численного решения дифференциального уравнения смешанного типа в неограниченной области

© М.П. Галанин^{1,2}, Д.Л. Сорокин^{1,2}, А.Р. Ухова²

¹ИПМ им. М.В. Келдыша РАН, Москва, 125047, Россия ²МГТУ им. Н.Э. Баумана, Москва, 105005, Россия

Разработаны методы численного решения задачи для уравнения смешанного типа в неограниченной области в случае, когда решение удовлетворяет уравнению теплопроводности в ограниченной области и уравнению Лапласа в оставшейся части пространства. Предложен способ задания искусственных граничных условий, позволяющий проводить расчёты в ограниченной области. Построен итерационный алгоритм нахождения численного решения в ограниченной области, такой что численное решение сходится к проекции точного решения на ограниченную область. Исследована скорость сходимости итерационного алгоритма. Задача решена в одномерном плоском, в цилиндрически и сферически симметричных случаях. Приведены примеры решений.

Ключевые слова: уравнения смешанного типа, неограниченная область, итерационный алгоритм

Введение. Часто при решении реальных задач математическую модель необходимо строить в неограниченной области, например, при моделировании квазистационарного электромагнитного поля в электродинамическом ускорителе рельсового типа. Такие задачи характеризуются тем, что внутри некоторой области процесс описывается параболическим уравнением, а вне — эллиптическим.

Для численного решения задач в неограниченной области разработано множество методов, например, метод замены переменных, метод граничных интегральных уравнений, метод разностных потенциалов [1–3], метод введения бесконечных элементов совместно с конечными элементами [4–5], использование квазиравномерных сеток [6], однако данные методы не всегда позволяют эффективный вычислительный алгоритм.

Рассмотрим начально-краевую задачу для уравнения смешанного типа во всем пространстве. А именно, искомое решение в некоторой ограниченной области D является решением нестационарного уравнения теплопроводности, а вне области D решение удовлетворяет уравнению Лапласа. На границе области D имеют место условия непрерывности решения и потоков. Чтобы обеспечить единственность, наложим на искомую функцию u условие регулярности на бесконечности [7–8]. В итоге решаемая задача имеет вид:

$$\begin{cases}
u_t = \Delta u, & \vec{r} \in D, \\
u_{t=0} = u_0(\vec{r}), & \vec{r} \in D, \\
\Delta u = 0, & \vec{r} \in \mathbb{R}^n \setminus D, \\
|u| < +\infty, \\
[u] = 0, \quad \left\lceil \frac{\partial u}{\partial n} \right\rceil = 0 \quad \text{Ha} \ \partial D.
\end{cases}$$
(1)

Требуется построить метод нахождения численного решения задачи в ограниченной области, точное решение которой совпадает с проекцией решения исходной задачи в бесконечном пространстве на эту область.

Необходимо рассмотреть задачу в декартовой, цилиндрической и сферической системах координат в одномерном случае.

Граничное условие. Рассмотрим двумерный случай Пусть область $D_2: D \subset D_2$ (рис.1). Для нахождения решения задачи вида (1) в этой области необходимо поставить граничное условие на границе D_2 [3, 9, 10]. Форма области D может быть сложной, что не позволяет задать функции Грина решаемых уравнений. Поэтому в [11] рассмотрена дополнительная граница ∂D_1 в области $D_2 \searrow D$, представляющая собой окружность радиуса r_1 . Решение внешней краевой задачи для уравнения Лапласа вне круга известно и задается интегралом Пуассона [7–8, 12]. В двумерном случае он имеет вид:

$$u(r,\varphi) = Pu = \frac{1}{2\pi} \int_{0}^{2\pi} u(r_{1},\psi) \frac{r^{2} - r_{1}^{2}}{r^{2} - 2rr_{1}\cos(\varphi - \psi) + r_{1}^{2}} d\psi, \quad r > r_{1}.$$

Если решение на ∂D_1 известно, то вычислением интеграла Пуассона можно получить значения искомой функции, например, на границе области D_2 .

Рис. 1. Структура расчётной области

Тогда исходная задача в части уравнения Лапласа примет вид:

$$\begin{cases} \Delta u = 0, \quad \vec{r} \in D_2 \setminus D, \\ u|_{\partial D_2} = \frac{1}{2\pi} \int_0^{2\pi} u(r_1, \psi) \frac{r_2^2 - r_1^2}{r_2^2 - 2r_1 r_2 \cos(\varphi - \psi) + r_1^2} d\psi. \end{cases}$$
(2)

Здесь точка $(r_2, \phi) \in \partial D_2$.

Одномерный плоский случай. В одномерном случае в декартовых координатах задача (1) имеет вид (3). Во всех рассмотренных далее одномерных плоских задачах считаем $\psi(t) = const$, $u_0(0) = const$.

$$\begin{cases} u_{t} = u_{xx}, & 0 < x < L, t > 0, \\ u|_{t=0} = u_{0}(x), & 0 < x < L, \\ u|_{x=0} = \psi(t), \\ u_{xx} = 0 & L < x < +\infty, \\ |u| < +\infty, \\ u|_{x=L-0} = u|_{x=L+0}, \\ u_{x}|_{x=L-0} = u_{x}|_{x=L+0}. \end{cases}$$
(3)

Решение будем искать на отрезке $[0, L_2]$, $L < L_1 < L_2$. Условие на границе L_2 в одномерном случае представляет собой равенство значений искомой функции в L_1 и в L_2 :

$$u|_{x=L_2} = u|_{x=L_1}$$
.

Оно является следствием постоянства регулярного решения уравнения Лапласа в данном случае.

Точное решение задачи разыскивается обычным способом в виде разложения по собственным функциям, соответствующим собственным числам

$$\lambda_n = \frac{\pi}{2L} + \frac{\pi n}{L}, \, n \in \mathbb{Z}.$$
(4)

Для численного решения введем сетку в области $\Omega_T = \{0 \le x \le L_2, 0 \le t \le T\}$ по переменным x и t: $\omega_{h_1} = \{x_i = ih_1, i = 0, 1, ..., N_{h_1} - 1, h_1 = L/(N_{h_1} - 1)\}$ — равномерная сетка с шагом h_1 на отрезке $0 \le x \le L$, N_{h_1} — количество узлов сетки, $\omega_{h_2} = \{x_j = jh_2 + L, j = 0, 1, ..., N_{h_2} - 1, h_2 = (L_2 - L)/(N_{h_2} - 1)\}$ — равно-мерная сетка с шагом h_2 на отрезке $L \le x \le L_2$, в итоге сетка по

пространству содержит $(N_{h_1} + N_{h_2} - 1)$ точек, $\omega_{\tau} = \{t_k = k\tau, k = 0, 1, ..., N_{\tau}, \tau = T / N_{\tau}\}$ — равномерная сетка с шагом τ на отрезке $0 \le t \le T$.

Запишем неявную разностную схему для уравнения теплопроводности [13]:

$$\begin{cases} \frac{y_i^k - y_i^{k-1}}{\tau} = \frac{y_{i+1}^k - 2y_i^k + y_{i-1}^k}{h_1^2}, & i = 1, \dots, N_{h_1} - 2, \\ y_i^0 = u_0(x_i), & y_0^k = \psi(t_k). \end{cases}$$
(5)

Здесь и далее используем обозначение *у* для численного аналога точного решения *u*.

Далее запишем разностную схему для уравнения Лапласа:

$$\frac{y_{i+1}^k - 2y_i^k + y_{i-1}^k}{h_2^2} = 0, \quad i = N_{h_1}, \dots, N_{h_1} + N_{h_2} - 3$$

Аппроксимируем условия сопряжения интегро-интерполяционным способом. Для этого проинтегрируем уравнение теплопроводности (3) на отрезке $[L-h_1/2, L]$, проинтегрируем уравнение Лапласа на отрезке $[L, L+h_2/2]$ и приравняем потоки слева и справа от границы. Далее заменим производные разностными, а интеграл — квадратурой и получим уравнение [13–14]:

$$\frac{1}{h_1} y_{N_{h_1}-2}^k - \left(\frac{h_1}{2\tau} + \frac{1}{h_1} + \frac{1}{h_2}\right) y_{N_{h_1}-1}^k + \frac{1}{h_2} y_{N_{h_1}}^k = -\frac{h_1}{2\tau} y_{N_{h_1}-1}^{k-1}.$$
 (6)

имеет порядок аппроксимации $O(h_1^2 + h_2^2 + \tau)$.

Полученную систему линейных алгебраических уравнений можно решить, например, методом Гаусса с частичным выбором главного элемента [13]. Более рационально использовать специально созданный вариант метода прогонки [13], поскольку матрица решаемой системы уравнений отличается от трехдиагональной лишь одной последней строкой. Те же алгоритмы можно будет применять при решении других систем алгебраических уравнений, которые возникнут далее в данной работе.

Пример 1. Задача (3) с $u_0(x) = 1 - x$. Ее точным решением является функция:

$$u(x,t) = 1 + \frac{2}{L} \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{\lambda_n^2} \sin(\lambda_n x) e^{-\lambda_n^2 t}, \quad 0 < x < L.$$

Здесь и далее для случаев плоской и цилиндрической геометрий u(x,t) = u(L,t) при x > L. В случае плоской геометрии для нахождения ошибки в качестве точного решения взята частичная сумма ряда до 3 члена. Ошибка вычислена в равномерной норме.

Расчеты произведены при значениях L=1, $L_2=2$, T=1. В таблице 1 приведены результаты вычислений.

Таблица 1

Сравнение численного решения с точным при различных соотношениях шагов сетки в плоском случае при $L_I = 1,75$ для примера 1

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$1,00271 \cdot 10^{-2}$	
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$2,51836 \cdot 10^{-3}$	3,982
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$6,30219 \cdot 10^{-4}$	3,996
$N_{h_1} = N_{h_2} = 161, N_\tau = 1344$	$1,57592 \cdot 10^{-4}$	3,999

Отметим, что при различных положениях дополнительной границы L_2 ошибки остаются одинаковыми.

На рис. 2 показано решение в различные моменты времени.

Рис. 2. Эволюция во времени решения из примера 1

Пример 2. Задача (3) с $u_0(x) = \cos x$. Ее точным решением при 0 < x < L является функция:

$$u(x,t) = 1 + \frac{1}{L} \sum_{n=0}^{\infty} \sin(\lambda_n x) e^{-\lambda_n^2 t} \left[\frac{\lambda_n^2 (-1)^n (1 - \sin L) - \lambda_n (-1)^n (1 + \sin L) + 2}{\lambda_n (\lambda_n^2 - 1)} \right]$$

В табл. 2 приведены результаты вычислений.

Таблица 2

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$3,47402 \cdot 10^{-3}$	—
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$8,72007 \cdot 10^{-4}$	3,984
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$2,18188 \cdot 10^{-4}$	3,997
$N_{h_1} = N_{h_2} = 161, N_{\tau} = 1344$	$5,45582 \cdot 10^{-5}$	3,999

Сравнение численного решения с точным при различных соотношениях шагов сетки в плоском случае при $L_1 = 1,5\,$ для примера 1

На рис. 3 показано решение в различные моменты времени.

Рис. 3. Эволюция во времени решения из примера 2

Одномерный цилиндрический случай. Исходная задача в цилиндрических координатах имеет следующий вид:

$$\begin{cases} u_{t} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right), & 0 < \rho < R, \ t > 0, \\ u|_{t=0} = u_{0}(\rho), & 0 < \rho < R, \\ \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial u}{\partial \rho} \right) = 0, \quad \rho > R, \\ |u| < +\infty, \\ u|_{\rho=R-0} = u|_{\rho=R+0}, \\ u_{\rho}|_{\rho=R-0} = u_{\rho}|_{\rho=R+0} . \end{cases}$$
(7)

Решение будем искать на отрезке $[0, R_2]$. Условие на внешней границе R_2 такое же, как и в плоском случае:

$$u|_{\rho=R_2} = u|_{\rho=R_1}$$
.

Обоснование аналогично таковому для плоского случая. Точным решением задачи в области $0 < \rho < R$, является функция

$$u(\rho,t) = \sum_{n=0}^{\infty} \frac{2}{R^2 J_0^2(\lambda_n R)} J_0(\lambda_n \rho) e^{-\lambda_n^2 t} \int_0^R u_0(\tilde{\rho}) J_0(\lambda_n \tilde{\rho}) \tilde{\rho} d\tilde{\rho}.$$

Здесь собственные числа λ_n являются корнями уравнения:

$$\lambda_n J_1(\lambda_n R) = 0,$$

следующего из граничного условия при $\rho = R$, J_0 , J_1 — функции Бесселя.

Воспользуемся введенной ранее сеткой на Ω_T . Оператор Лапласа аппроксимируем интегро–интерполяционным методом [14]. Для этого проинтегрируем $Au = \Delta u$ по ячейке размером h с весом ρ . Получим для разностного ператора A_h :

$$V_{h,i}A_{h,i}y = \frac{y_{i+1} - y_i}{h}\rho_{i+1/2} - \frac{y_i - y_{i-1}}{h}\rho_{i-1/2},$$
(8)

где $V_{h,i} = \frac{1}{2} \left(\rho_{i+1/2}^2 - \rho_{i-1/2}^2 \right)$ — объем ячейки.

В итоге имеем разностную схему для уравнения теплопроводности:

$$\begin{cases} \frac{y_i^k - y_i^{k-1}}{\tau} = \frac{1}{\rho_i h_1} \left(\rho_{i+1/2} \frac{y_{i+1}^k - y_i^k}{h_1} - \rho_{i-1/2} \frac{y_i^k - y_{i-1}^k}{h_1} \right), \\ y_i^0 = u_0(\rho_i). \end{cases}$$
(9)

Для аппроксимации условия в нуле проинтегрируем уравнение по ячейке $[0, h_1/2]$ с весом ρ , заменим производные разностными, а интеграл — квадратурой, получим:

$$\frac{y_0^k - y_0^{k-1}}{\tau} = \frac{4}{h_1} \frac{y_1^k - y_0^k}{h_1}.$$

Далее запишем разностную схему для уравнения Лапласа:

$$\frac{1}{\rho_i h_2} \left(\rho_{i+1/2} \frac{y_{i+1}^k - y_i^k}{h_2} - \rho_{i-1/2} \frac{y_i^k - y_{i-1}^k}{h_2} \right) = 0.$$

Аппроксимируем условие сопряжения аналогично плоскому случаю. Для этого проинтегрируем уравнение теплопроводности (7) на

отрезке $[R - h_1 / 2, R]$ и уравнение Лапласа на отрезке $[R, R + h_2 / 2]$ с весом ρ . Учтем равенство потоков, заменим производные разностными, интеграл — квадратурой и получим:

$$\frac{2R-h_{1}}{2h_{1}}y_{N_{h_{1}}-2}^{k} - \left(\frac{h_{1}}{8\tau}(4R-h_{1}) + \frac{2R-h_{1}}{2h_{1}} + \frac{2R+h_{2}}{2h_{2}}\right)y_{N_{h_{1}}-1}^{k} + \frac{2R+h_{2}}{2h_{2}}y_{N_{h_{1}}}^{k} = -\frac{h_{1}(4R-h_{1})}{8\tau}y_{N_{h_{1}}-1}^{k-1}.$$
(10)

Описанная схема имеет порядок аппроксимации $O(h_1^2 + h_2^2 + \tau)$.

Пример 3. Задача (7) с $u_0(\rho) = \rho^2$. Для нахождения ошибки в качестве точного решения взята частичная сумма ряда до 20 члена. Ошибка вычислена в равномерной норме.

Расчеты произведены при значениях R = 5, $R_1 = 7,5$, $R_2 = 10$, T = 10. В таблице 3 приведены результаты.

Таблица З

Сравнение численного решения с точным при различных соотношениях шагов сетки в цилиндрическом случае для примера 3

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$3,5508 \cdot 10^{-2}$	
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$8,17853 \cdot 10^{-3}$	4,342
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$2,00052 \cdot 10^{-3}$	4,088
$N_{h_1} = N_{h_2} = 161, N_{\tau} = 1344$	$4,97371 \cdot 10^{-4}$	4,022

На рис. 4 изображено изменение решения с течением времени.

Рис. 4. Эволюция во времени решения из примера 3

Пример 4. Задача (7) с $u_0(\rho) = 1 - \rho^{3/2}$. В таблице 4 приведены результаты.

Таблица 4

Сравнение численного решения с точным при различных соотношениях
шагов сетки в цилиндрическом случае для примера 4

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$1,65663 \cdot 10^{-2}$	
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$3,4009 \cdot 10^{-3}$	4,871
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$8,03357 \cdot 10^{-4}$	4,233
$N_{h_1} = N_{h_2} = 161, N_{\tau} = 1344$	$1,97908 \cdot 10^{-4}$	4,059

На рис. 5 изображено изменение решения с течением времени.

Рис. 5. Эволюция во времени решения из примера 4

Одномерный сферический случай. Исходная задача имеет вид:

$$\begin{cases} u_{t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial u}{\partial r} \right), & 0 < r < R, t > 0, \\ u_{r=0} = u_{0}(r), & 0 < r < R, \\ \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial u}{\partial r} \right) = 0, & r > R, \\ |u| < +\infty, \\ u \xrightarrow{r \to \infty} 0, \\ u_{r=R-0} = u_{r=R+0}, \\ u_{r}|_{r=R-0} = u_{r}|_{r=R+0} . \end{cases}$$
(11)

Решение будем искать на отрезке $[0, R_2]$. Условие на границе R_2 в данном случае отличается от плоского и цилиндрического:

$$u|_{x=R_2} = \frac{R_1}{R_2} u|_{x=R_1}$$

Оно следует из (2) для данного случая. Точным решением задачи при 0 < r < R является функция:

$$u(r,t) = \frac{2}{Rr} \sum_{n=0}^{\infty} \sin(\lambda_n r) e^{-\lambda_n^2 t} \int_0^R \tilde{r} u_0(\tilde{r}) \sin(\lambda_n \tilde{r}) d\tilde{r}.$$

Собственные значения λ_n аналогичны таковым для плоского случая.

Решением уравнения Лапласа является функция $u = -\frac{c_1}{r}$, где $c_1 = c_1(t)$. Функцию $c_1(t)$ определим из условия сопряжения $u\Big|_{r=R} = -\frac{c_1}{R}$.

Аппроксимируем оператор Лапласа так же, как и в (8), с соответствующими изменениями:

$$V_{h,i}A_{h,i}y = \frac{y_{i+1} - y_i}{h}r_{i+1/2}^2 - \frac{y_i - y_{i-1}}{h}r_{i-1/2}^2,$$
(12)

где $V_{h,i} = \frac{1}{3} \left(r_{i+1/2}^3 - r_{i-1/2}^3 \right)$ — объем ячейки.

В случае уравнения теплопроводности разностная схема для введенной ранее сетки примет вид:

$$\frac{y_i^k - y_i^{k-1}}{\tau} = \frac{3}{h_1^3 (3i^2 + 1/4)} \left[\frac{y_{i+1}^k - y_i^k}{h_1} (i + 1/2)^2 h_1^2 - \frac{y_i^k - y_{i-1}^k}{h_1} (i - 1/2)^2 h_1^2 \right].$$

Для уравнения Лапласа получим схему:

$$\frac{3}{h_1^3(3i^2+1/4)} \left[\frac{y_{i+1}^k - y_i^k}{h_1} (i+1/2)^2 h_1^2 - \frac{y_i^k - y_{i-1}^k}{h_1} (i-1/2)^2 h_1^2 \right] = 0.$$

Чтобы аппроксимировать условие в нуле, проинтегрируем уравнение по ячейке $[0, h_1 / 2]$ с весом r^2 , заменим производные разностными, интеграл — квадратурой. Получим:

$$\frac{y_0^k - y_0^{k-1}}{\tau} = \frac{6}{h_1} \frac{y_1^k - y_0^k}{h_1}.$$
(13)

Аппроксимируем условие сопряжения $u_r |_{r=R-0} = u_r |_{r=R+0}$, проинтегрировав уравнения на соответствующих отрезках с весом r^2 и учтя в результатах равенство потоков. Заменим производные разностными, интеграл — квадратурой, получим:

$$\frac{(2R-h_{1})^{2}}{4h_{1}}y_{N_{h_{1}}-2}^{k} - \left(\frac{h_{1}}{24\tau}\left(12R^{2}-6Rh_{1}+h_{1}^{2}\right)+\frac{(2R-h_{1})^{2}}{4h_{1}}+\frac{(2R+h_{2})^{2}}{4h_{2}}\right)y_{N_{h_{1}}-1}^{k} + \frac{(2R+h_{2})^{2}}{4h_{2}}y_{N_{h_{1}}}^{k} = -\frac{h_{1}\left(12R^{2}-6Rh_{1}+h_{1}^{2}\right)}{24\tau}y_{N_{h_{1}}-1}^{k-1}.$$
(14)

However 5. Solve (11) or $\mu(r) = \frac{16R^{2}(\pi-2)}{24\tau}\sin\pi r$

Пример 5. Задача (11) с $u_0(r) = \frac{1017}{\pi^3 r} \sin \frac{27}{2R}$. Для нахождения ошибки в качестве точного решения взята ча-

для нахождения ошиоки в качестве точного решения взята частичная сумма ряда до 3 члена. Ошибка вычислена в равномерной норме.

Расчеты произведены при значениях R = 1, $R_1 = 1, 5$, $R_2 = 2$, T = 2. В таблице 5 приведены результаты.

Таблица 5

Сравнение численного решения с точным при различных соотношениях шагов сетки в сферическом случае для примера 5

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$4,32566 \cdot 10^{-3}$	_
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$9,93134 \cdot 10^{-4}$	4,358
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$2,42449 \cdot 10^{-4}$	4,097
$N_{h_1} = N_{h_2} = 161, N_{\tau} = 1344$	$6,02426 \cdot 10^{-5}$	4,025

На рис. 6 изображено изменение решения с течением времени.

Пример 6. Задача (11) с $u_0(r) = r^2$. В таблице 6 приведены результаты.

Таблица б

Сравнение численного решения с точным при различных с	соотношениях
шагов сетки в сферическом случае для примера 6	

Количество узлов	Ошибка	Отношение ошибок
$N_{h_1} = N_{h_2} = 21, N_{\tau} = 21$	$3,38884 \cdot 10^{-3}$	
$N_{h_1} = N_{h_2} = 41, N_{\tau} = 84$	$7,77695 \cdot 10^{-4}$	4,356
$N_{h_1} = N_{h_2} = 81, N_{\tau} = 336$	$1,89834 \cdot 10^{-4}$	4,096
$N_{h_1} = N_{h_2} = 161, N_{\tau} = 1344$	$4,71678 \cdot 10^{-5}$	4,024

На рис. 7 приведено решение в различные моменты времени.

Рис. 7. Эволюция во времени решения из примера 6

Итерационный метод. Для численного решения задачи можно построить итерационный алгоритм [11, 15], в котором на каждой новой итерации решается задача с известным граничным условием. При этом происходит пересчет условия на внешней границе. На каждой новой s – ой итерации граничное условие будет вычисляться через значения на предыдущей (s-1) – ой, все остальные величины — неизвестные. В двумерном случае вместо (2) получим следующую задачу во внешней области:

$$\begin{cases} \Delta u^{s} = 0, \quad \vec{r} \in D_{2} \setminus D, \\ u^{s}|_{\partial D_{2}} = \frac{1}{2\pi} \int_{0}^{2\pi} u^{s-1}(r_{1}, \psi) \frac{r_{2}^{2} - r_{1}^{2}}{r_{2}^{2} - 2r_{1}r_{2}\cos(\varphi - \psi) + r_{1}^{2}} d\psi = Pu^{s-1}. \end{cases}$$

Данный процесс будем применять для нахождения решения на каждом новом временном слое с использованием уже построенных

разностных схем. При таком способе система алгебраических уравнений принимает трехдиагональный вид, ее можно решить методом прогонки [13, 14]. Целью разработки метода является создание алгоритма для решения многомерных задач.

Рассмотрим сходимость [11] итерационного процесса. Ограничимся одномерным случаем. В нём Pu = u для плоской и цилиндрической геометрий, $Pu = \frac{R_1}{R_2} u$ для сферического случая.

Утверждение 1. В одномерном случае итерационный процесс сходится со скоростью геометрической прогрессии с показателем $\tilde{q}_0 = \frac{L_1 - L}{L_2 - L}$ — в плоском случае, $\tilde{q}_0 = \frac{R_1 - R}{R_2 - R}$ — в сферическом случае, $q_0 = \frac{\ln R_1 - \ln R}{\ln R_2 - \ln R}$ — в цилиндрическом случае.

Плоский случай. Изменения разностной схемы для расчета решения на новом *k*-ом временном слое являются очевидными. При этом у искомого решения добавляется индекс *s* — номер текущей итерации.

Приведем условие на границе L_2 . Оно примет вид:

$$y_{N_{h_1}+N_{h_2}-2}^{k,s} = y_m^{k,s-1},$$

где *т* — номер узла, попадающего на *L*₁.

На рис. 2 приведено решение в различные моменты времени задачи (3) с $u_0(x) = 1 - x$.

Рис. 8. Зависимость числа итераций от положения границы *L*₁: — результат проведения серии вычислительных экспериментов; — теоретическая оценка

Рассмотрим влияние параметров задачи на сходимость итерационного процесса. Исследуем влияние положения дополнительной границы. Для этого зафиксируем границы L, L_2 , будем менять положение дополнительной границы L_1 . Пусть L=1, $L_2=2$, T=0,05. На рис. 8 приведены результаты расчетов.

Чем ближе дополнительная граница к границе исходной области *D*, тем быстрее сходится итерационный процесс.

Согласно утверждению 1 должна наблюдаться сходимость со скоростью геометрической прогрессии с коэффициентом $q = \frac{L_1 - L}{L_2 - L}$. Тогда число итераций можно оценить по формуле

$$n > \frac{\ln \varepsilon}{\ln q},\tag{15}$$

где ε — относительная ошибка. На рис. 8 приведены два графика. Красным цветом построен график зависимости априорной оценки необходимого числа итераций до сходимости по формуле (15), а синим — результат вычислительных экспериментов. Видим, что качественно и количественно графики близки.

Цилиндрический случай. Изменения разностной схемы для расчета решения на новом *k* – ом временном слое являются очевидными. Они вполне аналогичны плоскому случаю.

На рис. 9 показано решение в различные моменты времени задачи (7) с $u_0(\rho) = \rho^2$.

Рис. 9. Зависимость числа итераций от положения границы R₁ в цилиндрическом случае: — — результат проведения серии вычислительных экспериментов, — — теоретическая оценка

Проведем такое же исследование, как и в плоском случае. Зафиксируем границы R, R_2 , будем менять положение дополнительной границы R_1 . Пусть R=1, $R_2=2$, T=0,05. На рис. 9 приведены результаты расчетов.

Так же, как и в плоском случае, итерационный процесс сходится быстрее, если дополнительная граница ближе к границе области *D*.

По формуле из утверждения 1 получена оценка скорости убывания ошибки. График зависимости оценки числа итераций от положения границы изображён на рис. 9 красным цветом. Видно, что результаты априорной оценки хорошо совпадают с результатами расчётов.

Сферический случай. Отличие итерационного процесса данного случая от двух рассмотренных состоит в уравнении, аппроксимирующем условие на границе L_2 . Оно примет вид:

$$y_{N_{h_1}+N_{h_2}-2}^{k,s} = \frac{R_1}{R_2} y_m^{k,s-1},$$

где *m* — номер узла, попадающего на *R*₁.

Решение задачи (11) с $u_0(r) = r^2$ приведено на рис. 7.

Зафиксируем границы R, R_2 , будем менять положение дополнительной границы R_1 . Пусть R=1, $R_2=2$, T=0,05. На рис. 10 приведены результаты расчетов.

Рис. 10. Зависимость числа итераций от положения границы *R*₁ в сферическом случае: — результат проведения серии вычислительных экспериментов; — теоретическая оценка

По результатам расчётов (рис. 10) можно сделать вывод о хорошем совпадении ожидаемой и наблюдаемой в экспериментах скорости сходимости разработанного алгоритма.

Заключение. В работе построены и реализованы численные алгоритмы решения уравнения смешанного типа в неограниченной области. Рассмотрен одномерный случай в декартовой, в цилиндрической и в сферической системах координат. Алгоритм построен методом конечных разностей. Приведены примеры решения. Показано, что численное решение сходится к проекции точного решения на ограниченную область.

Исследована зависимость решения от положения дополнительной границы. Результаты расчетов показали, что такой зависимости нет.

Построен итерационный алгоритм численного решения задачи в неограниченной области. Проведено исследование зависимости скорости сходимости итерационного процесса от положения дополнительной границы. Получено, что чем ближе эта граница к границе исходной области *D*, тем меньше итераций требуется для получения решения с заданной точностью. Предложенный итерационный процесс может быть легко обобщён для решения многомерных задач.

ЛИТЕРАТУРА

- Koleva M.N. Numerical solution of the heat equation in unbounded domains using quasi-uniform grids. *Lecture Notes in Computer Science*, 2006, vol. 3743, pp. 509–517.
- [2] Рябенький В.С. Метод разностных потенциалов для некоторых задач механики сплошных сред. Москва, Наука, 1987, 391 с.
- [3] Брушлинский К.В., Рябенький В.С., Тузова Н.Б. Перенос граничного условия через вакуум в осесимметричных задачах. *Журнал вычислительной математики и математической физики*, 1992, т. 32, № 12, с. 1929–1939.
- [4] Брушлинский К.В. *Математические и вычислительные задачи магнитной гидродинамики*. Москва, БИНОМ. Лаборатория знаний, 2009, 200 с.
- [5] Bettess P. Infinite Elements. Paris, Penshaw Press., 1992, 264 p.
- [6] Zienkiewicz O.C., Emson C., Bettess P. A novel boundary infinite element. *International Journal for Numerical Methods in Engineering*, 1983, vol. 83, no. 3, pp. 393–404.
- [7] Тихонов А.Н., Самарский А.А. Уравнения математической физики. Москва, Наука, 1972, 735 с.
- [8] Свешников А.Г., Боголюбов А.Н., Кравцов В.В. Лекции по математической физике. Москва, Изд-во МГУ, 1993, 352 с.
- [9] Галанин М.П., Сорокин Д.Л. Разработка и применение численных методов решения задач в неограниченной области на основе третьей формулы Грина. *Препринты ИПМ им. М.В. Келдыша*, 2018, № 246, с. 1–24.
- [10] Галанин М.П., Низкая Т.В. Разработка и применение численного метода линейных эллиптических уравнений в неограниченной области. *Препринты* ИПМ им. М.В. Келдыша, 2005, № 2, с. 1–29.

Методы численного решения уравнения смешанного типа...

- [11] Галанин М.П., Сорокин Д.Л. О решении внешних краевых задач для уравнения Лапласа. Дифференциальные уравнения, 2020, т. 56, № 7, с. 918–926.
- [12] Мартинсон Л.К., Малов Ю.И. Дифференциальные уравнения математической физики. Москва, Изд-во МГТУ им. Н.Э. Баумана, 1996, 228 с.
- [13] Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2010, 591 с.
- [14] Самарский А.А. *Введение в теорию разностных схем*. Москва, Наука, 1971, 552 с.
- [15] Вабищевич П.Н., Пулатов П.А. Численное решение внешней задачи Неймана. Журнал вычислительной математики и математической физики, 1987, т. 27, № 4, с. 536–543.
- [16] Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. Москва, Изд-во МЭИ, 2008, 670 с.

Статья поступила в редакцию 12.01.2021

Ссылку на эту статью просим оформлять следующим образом:

Галанин М.П., Сорокин Д.Л., Ухова А.Р. Методы численного решения дифференциального уравнения смешанного типа в неограниченной области. *Математическое моделирование и численные методы*, 2021, № 1, с. 91–109.

Галанин Михаил Павлович — д-р физ.-мат. наук, главный научный сотрудник, и.о. заведующего отделом ИПМ им. М.В. Келдыша РАН, профессор кафедры «Прикладная математика МГТУ им. Н.Э. Баумана. e-mail: galan@keldysh.ru

Сорокин Дмитрий Леонидович — младший научный сотрудник ИПМ им. М.В. Келдыша РАН, ассистент «Прикладная математика» МГТУ им. Н.Э. Баумана. e-mail: sorokin.dmitr@yandex.ru

Ухова Анна Романовна — студентка кафедры «Прикладная математика» МГТУ им. Н.Э. Баумана. e-mail: anna.r.ukhova@gmail.com

Methods for numerical solution of a mixed type differential equation in an unbounded domain

© M.P. Galanin^{1,2}, D.L. Sorokin^{1,2}, A.R. Ukhova²

¹Keldysh Institute of Applied Mathematics, Moscow, 125047, Russia ²Bauman Moscow State Technical University, Moscow, 105005, Russia

Methods are developed for the numerical solution of the problem for a mixed-type equation in an unbounded domain in the case when the solution satisfies the heat equation in a bounded domain and the Laplace equation in the rest of the space. A method for set-ting artificial boundary conditions is proposed, which makes it possible to carry out calculations in a limited area. An iterative algorithm for finding a numerical solution in a bounded domain is constructed, such that the numerical solution converges to a projection of the exact solution onto a bounded domain. The rate of convergence of the iterative algorithm is investigated. The problem is solved in one-dimensional plane, in cylindrically and spherically symmetric cases. Examples of solutions are given.

Keywords: mixed type equations, unbounded domain, iterative algorithm.

REFERENCES

- Koleva M.N. Numerical solution of the heat equation in unbounded domains using quasi-uniform grids. *Lecture Notes in Computer Science*, 2006, vol. 3743, pp. 509–517.
- [2] Ryabenky V.S. Metod raznostnyh potencialov dlya nekotoryh zadach mekhaniki sploshnyh sred [The method of difference potentials for some problems of continuum mechanics]. Moscow, Nauka Publ., 1987, 391 p.
- [3] Brushlinskii, K.V., Ryaben'kii, V.S., Tuzova, N.B. The transfer of boundary conditions across a vacuum in axisymmetric problems. *Computational Mathematics* and Mathematical Physics, 1992, vol. 32, no. 12, pp. 1757–1767.
- [4] Brushlinsky K.V. Matematicheskie i vychislitel'nye zadachi magnitnoj gidrodinamiki [Mathematical and computational problems of magnetic hydrodynamics]. Moscow, BINOM. Laboratory of Knowledge Publ., 2009, 200 p.
- [5] Bettess P. Infinite Elements. Paris, Penshaw Press., 1992, 264 p.
- [6] Zienkiewicz O.C., Emson C., Bettess P. A novel boundary infinite element. *International Journal for Numerical Methods in Engineering*, 1983, vol. 83, no. 3, pp. 393–404.
- [7] Tikhonov A.N., Samarsky A.A. Uravneniya matematicheskoj fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1972, 735 p.
- [8] Sveshnikov A.G., Bogolyubov A.N., Kravtsov V.V. Lekcii po matematicheskoj fizike [Lectures on mathematical physics]. Moscow, MSU Publ., 1993, 352 p.
- [9] Galanin M.P., Sorokin D.L. Development and application of numerical methods for solving tasks in unlimited regions based on the third green formula. *Keldysh Institute Preprints*, 2018, no. 246, pp. 1–24.
- [10] Galanin M.P., Nizkaya T.V. Development and application of a numerical method for solution of linear elliptic equations in unbounded region. *Keldysh Institute Preprints*, 2005, no. 2, pp. 1–29.
- [11] Galanin M.P., Sorokin D.L. Solving exterior boundary value problems for the Laplace equation. *Differential Equations*, 2020, vol. 56, no. 7, pp. 890–899.
- [12] Martinson L.K., Malov Yu.I. *Differencial'nye uravneniya matematicheskoj fiziki* [Differential equations of mathematical physics]. Moscow, BMSTU Publ., 1996, 228 p.
- [13] Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskih modelej [Methods of numerical analysis of mathematical models]. Moscow, BMSTU Publ., 2010, 591 p.
- [14] Samarskiy A.A. Vvedenie v teoriyu raznostnyh skhem [Introduction to the theory of difference schemes]. Moscow, Nauka Publ., 1971, 552 p.
- [15] Vavishchevich P.N., Pulatov P.A. Numerical solution of the Neumann exterior problem. USSR Computational Mathematics and Mathematical Physics, 1987, vol. 27, iss. 2, pp. 141–146.
- [16] Amosov A.A., Dubinsky Yu.A., Kopchenova N.V. Vychislitel'nye metody dlya inzhenerov [Computational methods for engineers]. Moscow, MEI Publ., 2008, 670 p.

Galanin M.P., Dr. Sci. (Phys. — Math.), Chief Researcher, Acting Head of the Department of the Keldysh Institute of Applied Mathematics, Professor of Department of Applied Mathematics, Bauman Moscow State Technical University. e-mail: galan@keldysh.ru

Sorokin D.L., Junior researcher of the of the Keldysh Institute of Applied Mathematics, assistant of Department of Applied Mathematics, Bauman Moscow State Technical University. e-mail: sorokin.dmitr@yandex.ru

Ukhova A.R., student of Department of Applied Mathematics, Bauman Moscow State Technical University. e-mail: anna.r.ukhova@gmail.com