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Исследована математическая модель многомасштабного процесса фильтрации 
неньютоновской жидкости в трехмерных периодических пористых средах мето-
дом асимптотической гомогенизации. Сформулированы так называемая локальная 
задача фильтрации в отдельной поре и локальное неньютоновско-вязкое опреде-
ляющее соотношение. Разработан итерационный метод конечных элементов для 
решения локальной задачи в 1/8 ячейке периодичности, основанный на физической 
симметрии структуры. Рассчитаны распределение компонент скорости филь-
трации, микрополей давления и неньютоновской вязкости в отдельной поре. На 
основе закона Дарси проанализирован нелинейный закон фильтрации, показано 
влияние реологических свойств жидкости на проницаемость. 
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Введение. Течение неньютоновской жидкости в пористых средах 

играет важную роль во многих технических приложениях � получе-
нии полимерных композитов, технологии текстильных изделий и про-
изводстве бумаги. Таким образом, для оптимизации этих процессов 
требуется надлежащее описание течения через пористые среды [1�4]. 

Если жидкость можно считать ньютоновской, прямое примене-
ние известного закона Дарси [5] к пористым средам позволяет доста-
точно хорошо предсказать процесс течения. Основными параметрами 
пористой среды, определяющими процесс фильтрации, являются вяз-
кость жидкости и компоненты тензора проницаемости. Для того что-
бы избежать сложных лабораторных экспериментов, эти компоненты 
тензора проницаемости могут быть определены с использованием 
аналитических или численных методов. В литературе отображены 
теоретические работы по численным расчетам о течении Стокса и га-
за в периодических пористых средах [5�13]. Выполненные на опре-
деленной геометрии, они представляют собой интересные шаги к по-
ниманию течения жидкостей и газов через более сложные пористые 
среды [14].  

Поскольку неньютоновские жидкости обладают сложными рео-
логическими свойствами, фильтрационные свойства неньютоновских 
жидкостей в пористых средах также стали довольно сложными.  
В проведенных теоретических исследованиях [4, 15�17] предложены 
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законы фильтрации для поперечного ползучего течения степенных 
жидкостей через волокнистую среду. Однако этих исследований не-
достаточно для формулировки закона, описывающего процесс филь-
трации неньютоновской жидкости при произвольных сложных гео-
метриях пористых сред.  

В данной работе мы изучаем характеристики течения неньюто-
новской жидкости в трехмерной композитной структуре. Для моде-
лирования течения в отдельных порах трехмерной пористой среды 
использовали метод асимптотической гомогенизации, закон филь-
трации неньютоновской жидкости в пористых средах и влияние не-
ньютоновской вязкости на проницаемость.  

Цель данной работы � разработать физико-математическую мо-
дель локального движения транспорта неньютоновской несжимаемой 
жидкости в пористой композитной структуре, предложить численный 
алгоритм для локальных задач неньютоновских жидкостей в ячейке 
периодичности, проанализировать роль влияния реологических 
свойств на проницаемость.  

Принятые допущения и геометрическая модель расчетной 
области. Принято, что жидкость представляет собой изотропную не-
ньютоновско-вязкую несжимаемую среду. Процесс фильтрации счи-
тается изотермическим, плотность массовых сил полагается равной 
нулю.  

 

Рис. 1. Геометрическая модель расчетной области: 
а � периодическая пористая структура; б � ячейки периодичности;  

в � 1/8 ячейки периодичности 

 
Рассмотрим модель пористой среды (рис. 1). Микроскопические 

упругие свойства этой ортогональной пористой структуры были изу-
чены в работах [18�20]. Предполагается, что пористая структура  
характеризуется периодичностью, отсутствуют тупиковые поры, 
ячейки периодичности геометрически и физически симметричны  
относительно координатных плоскостей местной декартовой систе-
мы координат. Всю область рассматриваемой трехмерной ортого-
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нальной композитной структуры (см. рис. 1), которая занята порами, 
будем обозначать ,V  а ее границу (поверхность раздела с твердым 

телом) � .  Введем также следующие обозначения: V  � ячейка 

периодичности; pV  � область, занятая порой;   � граница поры  

с твердым телом.  
Математическая модель течения неньютоновских жидкостей. 

Рассмотрим движение несжимаемой неньютоновской жидкости в по-
ристой среде, описываемое системой уравнений [21, 22]: 

0; v                                               (1) 

,p
t

        

v
v v  

где   � плотность; v  � скорость; p  � давление;   � тензор вяз-
ких напряжений;   � тензорное произведение;   � набла-оператор. 

Дополним систему (1) определяющими соотношениями неньюто-
новской жидкости. Для этой цели могут быть рассмотрены разные  
модели, например модели AI и AV фойгтовских изотропных вязких  
сред [22]. Показано, что для изотропной неньютоновско-вязкой среды 
фойгтовского типа тензор вязких напряжений можно представить в ви-
де квазилинейной функции от тензора скоростей деформации D  [23]: 

 2 ,T      D v v                                (2) 

где   � коэффициент неньютоновской вязкости, зависящий от 

 2I D  � второго инварианта тензора скорости деформации [24]: 

 2 2 .I  D D D                                            (3) 

Рассмотрим модель Carreau [21, 22, 25], в которой зависимость 
коэффициента вязкости  2I  имеет степенной вид  

 
1

2 2 2
2

0

1 .
n

I






 
  

 
                                   (4) 

Здесь 0  � вязкость с нулевой скоростью сдвига;   � вязкость  

с бесконечной скоростью сдвига;   � постоянная времени, число 
Carreau; n  � степенной индекс. Поэтому отклонение n  от единицы 
указывает на степень отклонения от ньютоновского поведения. При 

1n   мы имеем псевдопластичные жидкости (истончение сдвига), 
при 1n   � дилатантные жидкости (утолщение сдвига). Псевдо- 
пластичные жидкости характеризуются кажущейся вязкостью, кото-
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рая уменьшается с увеличением скорости сдвига, однако в жидкости 
дилатантов кажущаяся вязкость возрастает с увеличением скорости 
сдвига. Очевидно, что при 0 ,    0   или 1n   модель Carreau 

описывает ньютоновские жидкости.  
На поверхностях раздела «твердое тело � жидкость»   характе-

ризует граничное условие прилипания  

0. v                                                           (5) 

В начальный момент времени при 0t t  считается заданным дав-

ление  

0
0.

t t
p p                                            (6) 

Введем безразмерную форму:  

0

;
v


v

v

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;
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p
p

  
0

;
t

t
t
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0

;
x
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x

x
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 0
0

0

;
x

t
v

  
0

,


 



           (7) 

где 0v  � модуль вектора характерной скорости, м/с; 0p  � характер-

ное давление, Па; 0x  � характерный размер всей области среды, м; 

0  � характерное значение вязкости; 0t  � характерное время. 

Систему уравнений для течения несжимаемой неньютоновской 
жидкости можно записать в безразмерной форме следующим обра-
зом (символ ˞ далее опускаем):  

0; v  

 1 2
;

Eu Eu Re
p

t

         

v
v v D                       (8) 

 1
;

2
T  D v v  

  
1

2 2 2
21 1 Cu ;

n

s s I


      2 2 ;I  D D  
0

,s 



 

где 0
2

0 0

Eu
p

v



 � число Эйлера; 0 0 0

0

Re
v x




 � число Рейнольдса; 

0

0

Cu
v

x


  � число Carreau.  

Применение метода асимптотического осреднения (МАО) для 
постановки задачи на ячейке периодичности. Применение метода 
асимптотического осреднения для системы уравнений Навье�Стокса 
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описано в работах [1, 3, 12]. В рассматриваемом случае суть метода 
состоит в следующем. Пусть введены: 0l  � линейный размер ячейки 

периодичности V  среды, малый параметр 0

0

1,
l

x
    два типа без-

размерных координат � глобальные  1 2 3
0

, ,x x x
x

 
x

x


  

и локальные  1 2 3
0

, , .
l

     


x x
ξ


 Тогда все функции ( ),f  описы-

вающие течение жидкости в порах, можно считать квазипериодичес- 
кими, т. е. зависящими от времени t  локальных ( )ξ  и глобальных ( )x


 

координат. Дифференцирование этих функций можно осуществлять  
с помощью правила  

1
.xf f f   


                                    (9) 

Условие квазипериодичности заключается в том, что функции f  

медленно изменяются по аргументу ix  на расстояниях 0x  и являются 

периодическими относительно аргумента ,j  т. е. 

1 2 3 1 2 3
1 1

, , , , ;
2 2

f f
              
   

 

1 2 3 1 2 3
1 1

, , , , ;
2 2

f f
              
   

                     (10) 

1 2 3 1 2 3
1 1

, , , , .
2 2

f f
              
   

 

Кроме того, вводится операция осреднения функций по области :pV  

1
,

p
p V

f fdV




                                       (11) 

где 

p

p
V

dV



    � пористость среды. 

Тогда, выполняя осреднение ,p  ,v  ,  получим 

,v v  ,p p  ,                               (12) 

где ,v  ,p    � средние значения функций.  
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Соотношения (12) следует понимать как дополнительные усло-
вия, предъявляемые к локальным параметрам течения в ,pV  либо как 

обозначения для вычисленных осредненных функций.  
Введем соотношения между безразмерными параметрами ,  Eu,  

Re  и Cu:  

 0Eu Eu 1 ;e O     0Re Re 1 ;r O    

0Cu Cu;c    0Cu 1 ,O                                    (13) 

где , ,e r c  � некоторые целые числа, которые соответствуют 
разным режимам течения неньютоновской жидкости.  

В соответствии с общей концепцией МАО решение задачи (8) 
находим в виде асимптотических разложений по степеням малого 
параметра :  

           0 1 22, , , ;     v v x ξ v x ξ v x ξ
  

  

           0 1 22, , , ;p p p p     x ξ x ξ x ξ
  

                   (14) 

           0 1 22, , , .        x ξ x ξ x ξ
  

  

Рассмотрим случай 2,e   0r   и 0,c   т. е.  Eu 1 ,O  Re   

 1O  и  Cu 1 .O  Подставляя разложения (14) в уравнения (8),  

с учетом правила дифференцирования квазипериодических функ- 
ций (9) и соотношений (10)�(12) получаем локальную задачу нулево-
го уровня:  

 0 0; v   0 0;p    0 0;
sg

v     0 , , .p t px ξ


         (15) 

Из уравнения (15) следует, что        0 0, , ,p t p tx ξ x
 

 не зависит 

от локальных координат .ξ  Рассматривая следующий уровень, полу-
чаем локальную задачу «на ячейке периодичности» относительно 

скорости нулевого уровня  0v  и давления первого уровня  1 :p  

 0 0; v  

        1 0 0 0
0 0

2
;

Eu Re
xp p      D  

      0 0 01
;

2
T

     D v v                       (16) 



Моделирование проницаемости неньютоновских жидкостей� 

25 

      
1

0 002 21 1 Cu ;
n

s s Y


           0 0 02 ;Y  D D  

 0 0;

v  

 1 0,p    0 0,      
v   1 0.p      

 

Неизвестными в этой системе являются функции  0v  и  1 ,p  гра-

диент давления  0
x p  рассматривается как один из входных пара-

метров. Символом      обозначены условия периодичности, причем 

1 1

2 2i     � область ячейки периодичности .pV  

Постановка локальных задач фильтрации с учетом трехмер-
ной структуры пор. Рассмотрим далее трехмерную пористую струк-
туру, у которой течение среды осуществляется вдоль одной   из 

трех осей .iO  Поскольку локальная задача является нелинейной, 

нельзя воспользоваться методом разделения переменных, как в рабо-
тах [9, 19]. Однако, основываясь на применяемых методах [9, 12, 19], 
решение задач можно упростить, если воспользоваться следующей 
теоремой о продолжении решения.  

Считается, что ячейка периодичности V  трехмерной структуры 

имеет зеркальную симметрию относительно координатной плоскости 

1 2 ,O   1 3,O   2 3.O   Тогда решение  0 ,v   1p  и  0  локальных за-

дач (16) можно получить с помощью симметричного или асимметрич-

ного продолжения функций         1 2 3, , ,v v v   v      p   и   ,  опре-

деленных в 1/8 ячейки периодичности pV  (в первом квадранте 

1
: 0 )

2i i
     
 

 (рис. 2) и являющихся решениями следующих  L   

локальных задач формы компонента:  

  0;i iv    

        0
,0 0

2
;

Eu Re
ij i ii

j
p D p  

                        (17) 

      1
;

2ij i j j iD v v       
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      
1

02 21 1 ;
n

s s Cu Y


             2 ,ij jiY D D      

где , ;i
i

f
f

x





 ;i

i

f
f





 ij  � символ Кронекера.  

 

Рис. 2. Изменение знаков функций при симметричном или асимметричном  

продолжении для локальной задачи 
 1

L  
 
Используя принцип симметричного и антисимметричного про-

должения решения системы (17), можно записать граничные условия 
на граничных плоскостях 1/8 ячейки периодичности ,pV  удовлетво-

ряющие условиям периодичности системы (16):  

0j   

и 
1

:
2j 

   
 

 

 
 

 

2 1 2 0;

1 0;

i
i j ji j ji j ji j ji

j

j j
j

v
v

p
p




   




 

                   



    







 

, , 1,3.i j                                           (18) 

Численное решение локальных задач. Решим локальную зада-

чу  L   (17) на основе метода конечных элементов [26], для чего  
используем 6-узловой тетраэдр c тремя степенями свободы по скоро-
стям в каждом узле и с одной степенью свободы по давлению в вер-

шинах. Поскольку локальная задача  L   (17) � нелинейная, для ее 
решения применим итерационный метод как разновидность метода 
упругих решений [18�20]. Согласно этому методу определяющие со-
отношения в системе (17) для вязкости неньютоновских жидкостей 
линеаризуются:  
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        

        

1

1
102 2

2

2 1 1 ,

m m m
ij ij

n
m m

ij

D

s s Cu Y D

   


  

   

 
    
  

 

 
                (19) 

где         1 1 12 ;m m m
ij jiY D D                  1

;
2

m m m T
ij i j j iD v v         m

ij
  

и   m
ijD   � значения тензора неньютоновско-вязких напряжений 

  0
ij
  и тензора скорости деформации   0

ijD   на m-м шаге итераци-

онного цикла;   m  � вязкость неньютоновской жидкости на m-м 
шаге итерации. 

Обозначим   m
iv   и   mp   � соответственно скорость   0

iv    

и давление   0p   на m-м шаге итерационного цикла. Тогда на m-м 
шаге итерации вместо задачи (16) получим следующую линеаризо-
ванную задачу:  

   0;m
i iv    

           1 0
,/ 0 0 /

2
.

Eu Re
m m m

ij i ii
j

p D p δ   
                  (20) 

Проверяем сходимость на m-м шаге итерации, если 
      1 ,m m mX X X


    где 510   является очень малым чис-

лом;      , , ,iX v p       затем итерационный процесс завершается. 

Нелинейный закон фильтрации неньютоновской жидкости. 

Из системы (16) видно, что решение  0(v  и  1 )p  локальной задачи 

зависит не только от входных данных  0 ,x p  но и от вязкости не- 
ньютоновской жидкости. Поэтому  

      0 0 0, .x p  v v                                (21) 

После решения серии задач  L   (17) методом конечных элемен-

тов для всех   проинтегрируем скорости  0v  по областям, занятым 
неньютоновской жидкостью. В результате получаем осредненную 
скорость в локальной задаче фильтрации (16). Тогда эффективный 

закон фильтрации, связанный с этой скоростью  0v  и градиентом 

давления  0 ,x p  можно записать в следующем виде: 
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    0 0 .xF p v                                 (22) 

Поскольку ранее был указан алгоритм вычисления осредненных 

скоростей  0v  по заданным значениям градиента давления  0 ,x p  

то, следовательно, фактически был указан алгоритм нахождения зна-
чения функции (22). Функция (22) может быть указана, если имеется 
информация о типе геометрической симметрии ячейки периодично-
сти композита и типе анизотропии волокон и матрицы. Ввиду того, 
что основное допущение симметрии принято, решение всех задач 

 L   (17) будет иметь указанный тип симметрии. Это относится и  
к функции (22). Но перечисленные выше и тождественные преобра-
зования образуют группу ортотропии. Согласно [22], функция (22) 
будет тензорной функцией, индифферентной относительно группы 
ортотропии. Но тогда для такой функции можно использовать пред-
ставление ее в тензорном базисе группы ортотропии, которое имеет 
вид  

     
3

0
1 2 3

1

, ,p p pI I I




 v e  или      
3

0
1 2 3

1

, , ,p p p
i iv I I I




     (23) 

где p
iI  � скалярные функции от инвариантов градиента давления 

 0 ,x p  

 0

.p
i

i

p
I

x





                                         (24) 

Функции    фактически представляют собой искомую эффек-

тивную проницаемость в пористых средах. Зная значения  0v  и 

,x p  функции    можно вычислить. Для ортогональных полей за-

пишем формулы (23) в явном виде:  

                0
,1 2 3 1 2 3, , , , .p p pp p p pI I I I I I I p    

                (25) 

Поэтому  

   
3

0 02

1

,x p




 
   
 
v e                           (26) 

где 2
   e e e  � диадный базис;  

3
2

1






 K e  � тензор прони- 

цаемости.  



Моделирование проницаемости неньютоновских жидкостей� 

29 

Из анализа локальных задач видно, что направление осредненной 
скорости противоположно направлению градиента давления, поэтому 

   0 0 ,x p  v K                                   (27) 

где   0 i
x jp K  K K  � тензорная функция, зависящая от модуля 

     0 0 0
x x xp p p     � градиента давления.  

Поскольку функция  v  для локальных координат имеет сим-

метрию или асимметрию, например, при 1   функция  1
2v  для ко-

ординатной плоскости 1 3(O   и 2 3)O   является асимметричной, по-

этому 1
2 0,K   функция  

3v   для этой координатной плоскости 

1 2(O   и 2 3)O   также асимметрична, поэтому 1
3 0.K   Следователь-

но, матрица  1 2 3
1 2 3diag , ,K K KK  будет диагональной. Стоит отме-

тить, что микроструктура является изотропной, имеем 1
1K   

2 3
2 3 .K K K    

Аналогично эффективную вязкость, связанную со осредненной 

вязкостью   и градиентом давления  0 ,x p  можно записать в 

форме функции  

        
            

3

1 2 3
1

3 3
0

,1 2 3
1 1

, ,

, , .

p p p

p p p
i i

I I I

I I I p

  



   


 

   

    



  

           (28) 

Для того чтобы изучить реологические свойства жидкостей, вве-
дем понятия средней вязкости и пористости:  

 
3

1

1 8
;

p p

dV dV

 


 
        

                        (29) 

1

8 8 ,
p e

E

p V V V
e

dV dV dV
  

        

где E  � число конечных элементов.  
Осредненная вязкость описывает макроскопическое свойство ре-

алогии. Значение вязкости, отличающейся от единицы, характеризует 
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прочность неньютоновской жидкости. Очевидно, что осредненная 
вязкость ньютоновской жидкости равна единице.  

Проверка адекватности математической модели на модели-
рование ньютоновских жидкостей. В качестве примера для чис-
ленного моделирования мы используем бензол (C6H6). Он входит  
в состав бензина, является исходным сырьем для производства ле-
карственных средств, различных пластмасс, синтетической резины, 
красителей.  

Таблица 1 

Основные параметры расчета 

Параметр Значение Параметр Значение 

0 ,  Пас 6,5210�4 0 ,v  м/с 0,1 

Cu0 1 0 ,x  м 1 

0 ,p  Па 105 0 ,l  м 10�4 

  10�4  0 01 Eu Re  6,5210�2 

 
Задача течения ньютоновской жидкости ( 1)n   для определения 

свойств композитных структур решается при  0 1,x p   пористос- 

ти � 0,6230, коэффициенте проницаемости 0,0689.K   

Таблица 2 

Результаты локальных задач 
 1

L  ньютоновской жидкости 

Параметр 
Значение 

минимальное максимальное 

 1
,p  Па �0,3529 0,3442 

 1
1 ,v  м/с 0 0,1436 

 1
2 ,v  м/с �0,0774 0 

 1
3 ,v  м/с 0 0,0776 

 1
,  Па·с 1 1 

 
Для установления точности численного алгоритма сначала про-

веряют изотропность материала. Согласно закону Дарси, закон филь-
трации ньютоновской жидкости удовлетворяет линейной зависимо-

сти от градиента давления  0
x p  (рис. 3).  
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Рис. 3. Зависимость средней скорости 
 

v


  от модуля 

градиента   макродавления   
 0

x p    для  ньютоновской 

жидкости в локальных задачах 
 

:L


 
 � L(1);  � L(2);  � L(3) 

 
Данные рис. 3 согласуются с законом Дарси для изотропных по-

ристых сред.  

Результаты моделирования локальной задачи  1L  псевдопла-
стичной жидкости. Выполним численное решение локальной зада- 

чи (17) при  0 1x p   и 0, 25.n   Результаты расчетов фильтрации 

неньютоновской жидкости приведены в табл. 3. По сравнению с ре-
зультатами для ньютоновской жидкости (см. табл. 2) в процессе 
фильтрации псевдопластичной жидкости ( 0,25)n   импульс давле-
ния немного увеличился, скорость течения возросла, вязкость значи-
тельно снизилась, пористость осталась неизменной.  

Таблица 3 

Результаты локальных задач неньютоновской жидкости при 0, 25n   

Параметр 
Значение 

минимальное максимальное

 1 ,p  Па �0,3570 0,3450 

 1
1 ,v  м/с 0 0,2451 

 1
2 ,v  м/с �0,1197 0 

 1
3 ,v  м/с 0 0,1196 

 1
,  Па·с 0,3136 0,9999 

�x
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Распределение компонентов скорости  1 ,v  давления  1p  и вяз-

кости  1  неньютоновской жидкости показаны на рис. 4. На этом  
и других аналогичных рисунках введены обозначения для локальных 
координат 1 ,x   2 ,y   3 .z   

 

Рис. 4. Результаты решения локальной задачи 
 1

:L  

а � компоненты скорости 
 1
1 ;v  б � компоненты скорости 

 1
2 ;v  в � компоненты скорости 

 1
3 ;v  г � компоненты давления 

 1
;p  д � компоненты вязкости 

 1
  
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Влияние реологических свойств на проницаемость. Исследуем 

связь между средней скоростью   ,v  градиентом давления  0
x p  и 

степенным индексом ,n  рассмотрим  0,25,1,75n  и    0 0,1 .x p   

Зависимости между средней скоростью  1v  и градиентом давления 

 0
x p  при разных степенных индексах n  показаны на рис. 5.  

 

Рис. 5. Зависимость средней скорости 
 1
1v  от градиента 

давления 
 0

x p  и степенного индекса n  для локальной  

задачи 
 1

L : 
 � n = 0,25;  � n = 0,50;  � n = 0,75;  � n = 1,00; 

 � n = 1,25;  � n = 1,50;  � n = 1,75 
 
Данные, приведенные на рис. 5, показывают, что осредненная 

скорость  1v  уменьшается с увеличением степенного индекса .n  

При увеличении модуля градиента давления  0
x p  средняя ско-

рость возрастает, эффект степенного индекса также увеличивается. 
Нелинейное соотношение, приведенное на рис. 5, соответствует за-
кону фильтрации (26) неньютоновской жидкости.  

�x
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На рис. 6 показана взаимосвязь между средней вязкостью  1   

и модулем  0
x p  градиента давления при разных степенных индек-

сах .n  Данные, приведенные на рис. 6, показывают, что средняя вяз-

кость  1  возрастает с увеличением степенного индекса. При уве-

личении модуля  0
x p  градиента давления влияние степенного 

индекса на среднюю вязкость также увеличивается.  

 

Рис. 6. Зависимость средней вязкости (1)  от градиента 

давления 
 0

x p  и степенного индекса n  для локальной  

задачи 
 1

L : 

 � n = 0,25;  � n = 0,50;  � n = 0,75;  � n = 1,00; 
 � n = 1,25;  � n = 1,50;  � n = 1,75 

 
Заключение. Предложенная методика позволяет вычислять рас-

пределение микрополей давления, вязкости неньютоновской жидко-
сти и компонент скорости фильтрации в пределах отдельной поры,  
а также рассчитывать основные параметры пористой среды (пористо-
сти и коэффициентов проницаемости) без проведения каких-либо до-
полнительных эмпирических исследований. Локальная задача, полу-
ченная на основе метода асимптотического осреднения, решается 
методом конечных элементов. Результаты моделирования выявляют 
роль реологии жидкости. Показано, что средняя скорость фильтрации 

�x
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уменьшается с увеличением индекса степенного закона, при увели-
чении модуля градиента макродавления средняя скорость фильтра-
ции возрастает и эффект степенного индекса также увеличивается. 
Кроме того, средняя вязкость жидкости возрастает с увеличением 
степенного индекса, при увеличении модуля градиента макродавле-
ния влияние степенного индекса на среднюю вязкость и фильтрацию 
также увеличивается.  
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Modeling non-Newtonian liquid permeability  
in three-dimensional composite structures  

on the base of asymptotic homogenization method 

 Y.I. Dimitrienko, Sh. Li 

Bauman Moscow State Technical University, Moscow, Russian Federation 
 
The paper describes investigating a mathematical model of the process of a non-
Newtonian liquid multiscale filtration in three-dimensional periodic porous media by as-
ymptotic homogenization. The so-called local problem of filtration in a single pore is 
formulated as well as the local non-Newtonian-viscous defining relationship. An iterative 
finite element method is developed for solving a local problem in 1/8 periodicity cell, 
based on the physical symmetry of the structure. The distribution of the components of 
the filtration rate, pressure micro-fields and non-Newtonian viscosity in a single pore is 
calculated. On the basis of Darcy's law the nonlinear filtration law is analyzed, the effect 
of liquid rheological properties on permeability is shown. 
 
Keywords: asymptotic homogenization method, non-newtonian liquid, periodic porous 
media, filtration law, rheological properties 
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