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Конечно-элементное моделирование термонапряжений 
в композитных термодеструктирующих конструкциях 

при аэродинамическом нагреве 
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Рассматривается сопряженная задача аэро-термо-механики теплонагруженных 
конструкций из термодеструктирующих полимерных композиционных материалов 
при воздействии интенсивного аэродинамического потока. Сформулирована мате-
матическая постановка сопряженной задачи и предложены алгоритмы численного 
решения этой задачи. Алгоритмы основаны на итерационном решении трех типов 
задач: аэрогазодинамики, внутреннего тепломассообмена и термомеханики кон-
струкции летательного аппарата. Представлен пример численного решения задачи 
для модельного элемента конструкции летательного аппарата в виде затупленного 
конуса. Показано, что воздействие высоких температур аэродинамического 
нагрева конструкции приводит к термодеструкции полимерного композиционного 
материала, следствием которого является генерация большого количества газов в 
порах и термохмическая усадка, которые при определенных условиях могут приво-
дить к преждевременному разрушению теплонагруженной композитной конструк-
ции. 
 
Ключевые слова: сопряженные задачи, аэро-термомеханика, тепломассоперенос, 
термодеструкция, термомеханика, композиционные материалы, тепловая дефор-
мация, поровое давление, термонапряжения, метод конечного элемента 
 

Введение. В ракетно-космической технике для теплозащиты 
внешних теплонагруженных частей летательных аппаратов часто 
применяется пассивный метод защиты, который заключается в 
использовании аблирующих композитных материалов [1–4]. К 
преимуществам пассивного метода теплозащиты относятся: 
относительная низкая стоимость, простота использования, 
надёжность, отсутствие ограничений по максимальному тепловому 
потоку и большой выбор материалов в связи с развитием органической 
химии. Согласно введенной в [5] классификации, существуют 3 
основных типа аблирующих материалов: 1) материалы с линейной 
абляцией, у которых при аэродинамическом нагреве происходит 
изменение геометрических размеров при неизменной плотности, 2) 
материалы с объемной абляцией, у которых при высоких 
температурах происходит изменение плотности, при неизменном 
объеме, 3) материалы, у которых линейная и объемная абляция 
реализуются одновременно. В данной работе рассматриваются 
материалы 2-го класса, к которому относятся, например, композиты на 
основе термодеструктирующих (термореактивных) полимерных 
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матриц. При умеренно высоких температурах (примерно до 2000 К) и 
умеренных скоростных напорах аэродинамического потока эти 
материалы терморазрушаются по модели 2-го типа. 

 В работах [5–7] была разработана математическая модель 
процессов внутреннего тепломассопереноса в полимерных 
термодеструктирующих композиционных материалах при 
нестационарном нагреве, учитывающая процессы термодеструкции, 
газообразования и фильтрации газов в порах материала. В работах [8–
10] были разработаны методы решения задач расчета напряженно – 
деформированного состояния конструкций из термо-
деструктирующих композитов, основанные на обобщенной теории 
пластин и оболочек и конечно-элементном анализе этих уравнений. 
Поскольку в различные моменты движения летательного аппарата в 
атмосфере на его конструкцию воздействуют меняющиеся силовые и 
тепловые нагрузки, то для задания граничных условий для задачи 
термомеханики необходимо предварительно решить задачу 
аэродинамики, в результате возникает сопряженная задача 
аэротермомеханики. В работе [11] разработан метод решения 
неполной сопряженной задачи ⸺ аэрогазодинамики и внутреннего 
тепломассопереноса.  

Целью настоящей работы является дальнейшее развитие 
указанных работ и разработка численного алгоритма решения полной 
сопряженной задачи аэротермомеханики с использованием метода 
конечного элемента для расчета напряженно деформированного 
состояния конструкции в рамках общей 3-х мерной постановки  

Математическая формулировка сопряженной задачи. Общая 
постановка сопряженной задачи аэротермомеханики композитной 
термодеструктирующей конструкции при аэродинамическом нагреве 
состоит из трех систем уравнений: 

 уравнений Навье-Стокса для внешнего высокоскоростного 
потока; 

 уравнений внутреннего тепломассопереноса в теплозащитной 
конструкции; 

 уравнений термоупругости композитной термодеструкти-
рующей конструкции; 

с соответствующими граничными и начальными условиями. 
Рассмотрим систему уравнений высокоскоростного потока 

вязкого теплопроводного газа (уравнения Навье-Стокса) [12, 13, 14], 
обтекающего рассматриваемую композитную конструкцию: 
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где обозначены следующие параметры высокоскоростного потока:   
⸺ плотность газа, v  ⸺ вектор скорости, p  ⸺ давление, E  ⸺ еди-

ничный тензор,   ⸺ плотность полной энергии газа, vT  ⸺ тензор вяз-

ких напряжений, q  ⸺ вектор теплового потока, t  ⸺ время, ⸺ на-
бла-оператор,   ⸺ знак тензорного произведения [15]. 

Присоединим к этой системе (1) определяющие соотношения 
совершенного линейно-вязкого газа: 
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где R  ⸺ универсальная газовая постоянная, M  ⸺ молекулярная 
масса,   ⸺ температура, e  ⸺ внутренняя энергия, Vc  ⸺ теплоёмкость 

при постоянном объёме, 1  и 2  ⸺ коэффициенты вязкости,   ⸺ теп-

лопроводность газа. Коэффициенты вязкости и теплопроводности яв-
ляются функциями температуры и вычисляются по формулам [12, 13, 
14]. Cистема уравнений рассматривается в области 1V , занятой газом. 

Граничные условия к системе (1) – (2) на поверхности 1  контакта 

газового потока с композитной конструкцией, имеют следующий вид: 

 ,, sw  v 0   (3) 

где sw  ⸺ температура поверхности конструкции. 

На условной удаленной от конструкции поверхности 2  задаются 

условия невозмущенного потока. 
Далее рассмотрим конструкцию из полимерных композиционных 

термодеструктирующих материалов. Исходный композиционный 
материал состоит из трех фаз: наполнителя в виде армирующих 
волокон, например, ткани,  полимерной матрицы и пор. При нагреве в 
процессе термодеструкции полимерная матрица разлагается на две 
новые фазы: твёрдый пиролитический остаток и газовую фазу, которая 
находится в порах и фильтруется по ним к нагреваемой поверхности 
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конструкции. Таким образом, исходный композиционный материал 
рассматривается как 4-х фазная структура [5–7]. 

Математическая модель внутреннего тепломассообмена в 
термодеструктирующем композите состоит из системы уравнений 
изменения массы полимерной фазы, уравнения фильтрации 
газообразных продуктов в порах материала и уравнения 
теплопроводности [5] 
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здесь введены обозначения: b , g  ⸺ объёмные концентрации поли-

мерной и газовой фаз композита; b   ⸺ плотность исходной полимер-

ной матрицы; g  ⸺ плотность газовой фазы в порах; gc  ⸺ теплоём-

кость газа в порах при постоянном объёме, s  и sc  ⸺ плотность и 

теплоёмкость композита, sq  ⸺ вектор теплового потока в композите, 

s  ⸺ температура композита; gv  ⸺ скорость фильтрации газовой 

фазы; 0e  ⸺ удельная теплота термодеструкции матрицы; J  ⸺ мас-
совая скорость термодеструкции матрицы; Г  ⸺ коэффициент гази-
фикации матрицы. Концентрацию пиролитической фазы композита 
вычисляем при помощи соотношения : 
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Уравнения тепломассопереноса (4) замыкаются определяющими 
соотношениями, которые связывают вектор-функции sq  и gv  с 

градиентами  температуры   и давления gp  при помощи законов 

Фурье и Дарси, а также соотношением Аррениуса для массовой 
скорости термодеструкции и уравнением Менделеева-Клапейрона: 
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где 0J  ⸺ предэкспоненциальный множитель, AE  ⸺ энергия актива-

ции процессов термодеструкции, gM  ⸺ молекулярная масса газа, gp

⸺ поровое давление газов, Λ  ⸺ тензор теплопроводности, K  ⸺ тен-
зор газопроницаемости композита.  

Для композита, как для многофазной системы, выполняются соот-
ношения смеси и условие нормировки (индекс f относится к армиру-
ющему наполнителю, который полагаем термоустойчивым в рассмат-
риваемом диапазоне температур, например, это могут быть углерод-
ные волокна): 
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где g ⸺ пористость. 

Граничные условия для системы уравнений (4)–(5) на нагреваемой 
поверхности 1  следующие: 
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где ep  ⸺ давление внешнего аэродинамического газового потока на 

поверхности тела, eq  ⸺ тепловой поток на внешней поверхности 1  

 4 4
g s .e e SB e SB s g g g g eq c                 n v   (8) 

Здесь введены обозначения: e  ⸺ максимальная температура газового 

потока в пограничном слое, e ⸺ градиент температуры внешнего 

потока на поверхности конструкции, g  и s  ⸺ коэффициенты излу-

чения газа во внешнего потоке и твердого тела, SB  ⸺ константа Сте-

фана-Больцмана,  ⸺ коэффициента вдува внутреннего газа из пор во 
внешний поток. 

На внутренних поверхностях конструкции 3 , не контактирую-

щих с внешним потоком, задаются условия герметичности и теплоизо-
ляции: 
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Для расчета термонапряжений в теплозащитной конструкции ис-
пользуется уравнение равновесия упругих композитных сред с нали-
чием термодеструктирующей матрицы [5]:  

 ( ) 0,g gp  σ   (10) 

где σ  ⸺ тензор упругих напряжений. 
К уравнениям (10) добавляются определяющие соотношения и со-

отношения Коши:  
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здесь обозначены: ε  ⸺ тензор малых деформаций, u  ⸺ вектор пере-

мещений, 4C  ⸺ тензор модулей упругости,   
0

ε  ⸺ тензор тепловых 
деформаций, α  ⸺ тензор теплового расширения, β  ⸺ тензор химиче-
ской усадки ⸺ все эти характеристики, а также тензоры Λ  и K  зави-
сят от температуры, концентраций фаз и матрицы преобразования j

iQ  

от локального базиса анизотропии ir  к базису ie  единых осей коорди-

нат [15]: 
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где ˆ ijklС  и ˆ ija   ⸺ компоненты тензоров в локальном базисе ir . 

Конкретные выражения для функций (12) представлены в [5]. 
Композиционный материал конструкции полагается криволинейно-
ортотропным. 

Граничные условия на нагреваемой поверхности 1  конструкции 

имеют следующий вид: 

 ( ) .e g gp p   n σ n   (13) 

На остальных частях поверхности задана либо свободная поверхность, 
либо жесткая заделка 

 ( ) =л .0 и 0иg p   un σ n   (14) 

После вычисления напряжений, деформаций и перемещений  в 
единой системе координат  с базисом ie  осуществляется переход к 
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напряжениям  в локальной системе координат с локальным базисом 
главных осей анизотропии ir  , по формулам 

 ' '
' ' ' 'ˆ .ij i j

i j i j    σ e e r r   

Численные методы решения сопряженной задачи. Для реше-
ния задачи аэродинамики (1)–(3) используется конечно-объёмный ме-
тод второго порядка аппроксимации с TVD реконструкцией [16, 17],  
подробно реализация этой численной методики решения описана в  
[18, 19]. 

Для решения задачи внутреннего тепломассопереноса (4)–(6) за-
пишем вариационную постановку этой задачи. Домножим первое 
уравнение системы (4) на вариацию концентрации полимерной фазы 

b , второе ⸺ на вариацию порового давления gp  и третье ⸺ на ва-

риацию температуры s , и проинтегрируем полученные уравнения 

по объёму конечного элемента: 
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  (15) 

Далее, используя формулу Остроградского-Гаусса и граничные усло-
вия (7), преобразуем интегралы, содержащие производные тензоров 
газопроницаемости и теплопроводности: 
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Подставляя (16) в (15) и используя уравнение Менделеева-Кла-
пейрона, получим вариационную постановку: 
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  (17) 

Согласно методу конечного элемента, разобьём расчётную об-
ласть на тетраэдры, введём в каждом элементе барицентрические ко-
ординаты, которые совпадают с функциями форм в случае линейной 
аппроксимации, и представим неизвестные функции в следующем 
виде: 

 { } { }, { } { }, { } { },T T T
b g sФ p Ф y Ф        (18) 

где , ,y   ⸺ значения соответствующих функций в узлах конечного 

элемента, а  1 2 3 4{ } ( , , , )TФ L L L L  ⸺ строка функций форм. Анало-

гично будут выглядеть вариации неизвестных функций: 

 { } { }, { } { }, { } { }.T T T
b g sФ p Ф y Ф           (19) 

Градиенты представим так: 

 3 4

3 4

{ }{ } { } [ ]{ },

{ }{ } { } [ ]{ },

T
g

x

T
s

x

p L Ф y B y

L Ф B  

  

  
  (20) 

где { } , ,
T

L
x y z

   
     

 ⸺ столбец дифференциальных операторов, 

3 4
[ ]

x
B  ⸺ матрица из производных функций форм. 

Тогда, подставляя соотношения (18)–(20) в вариационную поста-
новку (17), вынося вариации неизвестных функций, получаем локаль-
ную систему уравнений для каждого конечного элемента (КЭ) в виде: 
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  (21) 

здесь введены обозначения для следующих матриц: 
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Полученная система уравнений (21) является нелинейной систе-
мой обыкновенных дифференциальных уравнений, поскольку все мат-
рицы , , , , , , , ,p p pM M M S K K Q R R    и вектор правых частей R  

зависят от неизвестных функций , ,b p  .  

Для решения системы (21) воспользуемся методом линеаризации 
и неявной схемой Эйлера: 
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  (23) 

n  ⸺ индекс шага интегрирования по времени. Таким образом, в (23) 
получаем локальную систему линейных уравнений. Собирая её для 
всех конечных элементов,  получим систему линейных алгебраиче-
ских уравнений (СЛАУ) с разреженной, несимметричной матрицей. 
Для решения СЛАУ используется численный метод бисопряжённого 
градиента. 

Конечно-элементный метод решения задачи термомеханики. 
При решении задачи термомеханики (10)–(14), как и для системы 
уравнений тепломассопереноса, будем использовать метод конечного 
элемента (МКЭ). Выпишем вариационную постановку уравнения 
уравнения (11), для чего умножим его на вариацию перемещения u  
и проинтегрируем по объёму конечного элемента: 

 ( ) 0.g g

V

p     u σ E   (24) 

Далее рассмотрим цепочку равенств, используя формулу интегри-
рования по частям, формулу Остроградского-Гаусса и граничные 
условия (13), (14): 
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  (25) 

Затем в последнем интеграле формулы (22) перейдём от вариации 
перемещений к вариации тензора деформаций Коши  ε , что воз-
можно в силу симметричности тензора напряжений σ  и единичного 
тензора E  

 
1

( ) 0.e g g

V

p dS p dV  


      u n ε σ E   (26) 

Далее подставляем определяющее соотношение (11) для тензора 
напряжений и получаем искомую вариационную постановку: 
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Неизвестные перемещения в каждом КЭ, согласно методу конеч-
ных элементов, представляются в виде: 
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где 
12

{ }v  представляет собой столбец перемещений в узлах 4-х узлового 

тетраэдального КЭ. Введём дифференциальный оператор [ ]D : 
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с помощью которого компоненты тензора деформаций можно пред-
ставить в виде: 

 
6 3 3 12 6 1212 12

[ ] [ ][ ]{ } [ ]{ }.
x x x

D D Ф v B v  ε u   (29) 

Независимые компоненты тензора модулей упругости можно предста-
вить как  квадратную матрицу размера 6х6 [15].   Подставляя (28), (29) 
в вариационную постановку (27) и вынося за скобки вариации тензора 
деформаций, получаем следующую  систему уравнений: 
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где { } (1,1,1,0,0,0)TI   ⸺ единичная матрица в векторном представле-
нии. 

Линеаризуя систему уравнений (30), получаем следующую ло-
кальную СЛАУ: 
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где обозначены матрицы 
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Собирая все локальные СЛАУ (31), получаем глобальную СЛАУ 
с симметричной матрицей, которая решается методом сопряжённого 
градиента. 

Алгоритм учета анизотропии свойств композитной конструк-
ции. В силу того, что рассматриваемые композиты являются криволи-
нейно-ортотропными, их свойства меняются при переходе от одной 
точке конструкции к другой, даже при изотермических условиях де-
формирования. Для выбранного материала конструкции анизотропия 
свойств согласована с геометрией поверхности конструкции, поэтому 
локальный базис главных осей анизотропии материала ir  привяжем к 

локальным векторам базиса в системе координат, связанной с поверх-
ностью конструкции. Введем адаптивную систему координат 

, 1,3,iX i   которая согласована с базовыми поверхностями, ограни-
чивающими область V рассматриваемой конструкции, и построим 
криволинейные блоки, охватывающие геометрию конструкции (рис. 
1.), подобно тому, как строится расчетная область для генерации 
блочно-структурированных геометрически-адаптивных сеток [12]: 

 ( ),i i jx f X   (33) 

где ix  ⸺ исходные декартовы координаты, if  ⸺ известное преобра-

зование перехода, 1,3j . 
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С помощью преобразования координат (33) найдем вычислим ло-
кальные векторы базиса вдоль криволинейных направлений анизотро-
пии в любой заданной точке (рис. 1.):   

 , .
j

j j
i i i i i

x
Q Q

X


 


r e   (34) 

 

Рис. 1. Визуализация поля локальных векторов базиса для учета  
свойств анизотропии материала 

 
Пример построения векторов локального базиса для конструкции 

из анизотропного композиционного материала показан на рис. 1. 
Результаты численного моделирования. Численное решение за-

дачи было проведено для модельного летательного аппарата (ЛА), 
движущегося со скоростью 7M  . Конструкция  ЛА представляет со-
бой конус, затупленный по сфере (рис. 2). В качестве композиционных 
материалов конструкции были выбраны: фенольный стеклопластик 
(сферическая область затупления) и эпоксидный стеклопластик (кони-
ческая оболочка). Константы материалов были взяты из [5]. 

На рис. 2 показано распределение температуры s  в элементах 

конструкции модельного ЛА. Наиболее теплонагруженной областью 
является критическое затупление, где температура достигала значений 
1926 К. Под действием высоких температур после определенного вре-
мени началось интенсивное терморазложение фенольной и эпоксид-
ной матриц (рис. 3), в результате чего образовывалось большое коли-
чество газов в порах обоих типов композиционных материалов. На 
рис. 4 показано распределение порового давления внутри элементов 
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конструкции в некоторый момент времени 1t . Максимальные значения 

порового давления (cвыше 35 МПа) достигались в конической обо-
лочке из композита на эпоксидной матрице, несмотря на то, что для 
данной области уровень температур e  ниже, чем в области сфериче-

ского затупления. Этот эффект объясняется наличием более высокой 
первичной пористостью в композите на фенольной матрице, по срав-
нению с эпоксидной и более высокой термостойкостью данного типа 
композита.  

 

Рис. 2. Распределение температуры s (К) в модельной композитной конструкции  

 

 

Рис. 3. Распределение концентрации полимерной матрицы b   

в композитных элементах модельной конструкции 
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Рис. 4. Распределение порового давления gp (Па) в композитных  

элементах модельной конструкции 
 
На рис. 5 показаны перемещения по оси z . Видно, что в области 

затупления перемещения отрицательные, что связано с тепловыми 
расширениями композита под действием высоких температур. На рис. 
6 представлены распределения поперечных напряжений 3'3'̂ в кон-
струкции модельного ЛА в некоторый момент времени 1t . Их макси-

мальное значение достигается в области сферического затупления на 
некоторой глубине от нагреваемой поверхности.  

 

Рис. 5. Распределение перемещения по оси z (м)  в модельной конструкции 
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Рис. 6. Распределение поперечного напряжения 3'3'̂ (ГПа) 

в модельной композитной конструкции 
 

Выводы. Рассмотрена постановка сопряженной задачи аэроди-
намики и термомеханики теплозащитной конструкции из термо-
деструктирующих композитов. Разработаны численные конечно-
объемные и конечно-элементные методы решения этой задачи. При-
веден пример численного моделирования для модельной конструкции 
ЛА. Установлены некоторые особенности напряженного состояния 
конструкций, обусловленные терморазложением композитов при 
высоких температурах. 
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Finite-element modeling of thermal stresses in composite 
structures with thermal decomposition under aerodynamic 

heating 

 Yu.I. Dimitrienko, M.N. Koryakov, Yu.V. Yurin, A.A. Zakharov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The coupled task of aero-thermo-mechanics of heat-loaded structures from thermally de-
structive polymer composite materials under the influence of an intense aerodynamic flow 
is considered. The mathematical formulation of the conjugate problem is formulated and 
algorithms for the numerical solution of this problem are proposed. The algorithms are 
based on an iterative solution of three types of problems: aerodynamics, internal heat and 
mass transfer, and thermomechanics of the modeling aircraft structure. An example of a 
numerical solution to the problem for an aircraft structural element in the form of a blunt 
cone is presented. It is shown that the effect of high temperatures of aerodynamic heating 
of the structure leads to thermal degradation of the polymer composite material, which 
results in the generation of a large amount of gases in the pores and thermo-chemical 
shrinkage, which under certain conditions can lead to premature destruction of the heat-
loaded composite structure. 
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destruction, thermomechanics, composite materials, thermal deformation, pore pressure, 
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