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О численном решении обратной задачи  

теплопроводности с излучением 

© А.Ф. Грибов, Е.Н. Жидков, И.К. Краснов 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Исследована обратная задача восстановления коэффициента теплопроводности 

нелинейного параболического уравнения по финальному распределению темпера-

туры, служащего математической моделью для задачи определения дефектов кон-

струкций. Предложен алгоритм численного решения поставленной задачи. Рас-

смотрен численный пример. 
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Введение. В последнее время уделяется большое внимание зада-

чам неразрушающего контроля конструкций. Одним из вариантов та-

кого контроля является тепловидение. С помощью тепловизора воз-

можно определение положения дефекта в образце [1-9]. 

Математически эта задача сводится к задаче определения коэффи-

циента при старшей производной. Этим вопросам посвящено большое 

количество статей [10–19]. Настоящая работа посвящена численному 

решению обратной задачи. 

Сформулируем математическую постановку задачи. Пусть име-

ется неоднородный стержень длины l . На правый конец стержня по-

дается поток тепла. На левом конце стержня происходит теплообмен 

с внешней средой по закону Стефана–Больцмана. Требуется, зная по-

ток на левом конце отрезка, определить теплофизические характери-

стики стержня. 

Решение прямой задачи. Обозначим  ,u x t температуру стержня 

в момент времени t  в точке x ,  k x  — коэффициент, который может 

быть кусочно–непрерывным или гладким. 

Пусть тепловое поле удовлетворяет следующей системе уравне-

ний 
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Здесь   — постоянная Стефана–Больцмана,  q t  — заданная не-

отрицательная функция. 

В точках разрыва коэффициента  k x  выполняются условия не-

прерывности функции  ,u x t и потока этой функции    ,xk x u x t . 

Для практического решения поставленной задачи дискретизируем 

задачу (1). Для этого введем равномерную сетку 
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Обозначим  ,i j iju x t u . 

Для решения системы (1) применим консервативную схему [16]. 

Это позволит не учитывать положения точек разрыва коэффициента 

 k x . Обозначим 
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Для разностной задачи получим следующую систему 
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Задачу решаем методом разностной прогонки [16]. В силу нели-

нейности левого граничного условия применим правую прогонку. 

Для численного счета удобно считать, что  h  .  

Преобразовав первое уравнение (2), получим следующую систему 
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Предположим, что имеет место зависимость 

 1, 1 1 1 1.i j ij ij iju c u d        (4) 

Подставив выражение (4) в уравнение (3), получим 
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Выразим из последнего уравнения 1iju  . 
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Полученная зависимость аналогична формуле (4), поэтому можно 

записать 
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Заметим, что коэффициент ijc  не зависит от индекса j. Поэтому 

система (5) принимает вид 
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Подставим в (4) 1i n  . 
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Сравнивая его с правым краевым условием (2), получим, что  
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Из формулы (5) следует, что 
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коэффициенты 0 1ic  . Подставим в (4)  0i    
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Решим полученную систему относительно 0 1ju   
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Для исследования полученного уравнения обозначим 
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Полученное уравнение можно решать итерационным методом. 

1. Решение методом простой итерации  
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Условие сходимости полученного итерационного процесса 
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2. Преобразуем уравнение для применения метода Ньютона  
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Итерационный процесс строится по формуле 
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Для применения метода Ньютона требуется выполнение условия 
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Подставим в полученную формулу 0

ju . 
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Если условие выполнено, то итерационный процесс сходится с квад-

ратичной скоростью. 

Решение обратной задачи. В качестве обратной рассмотрим 

следующую задачу. Пусть нам известен поток при 0x   
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требуется, зная  t , найти функцию  k x . 

Сформулируем разностный аналог поставленной задачи. 

Пусть функция iju  — решение задачи (2). Обозначим  
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Введем невязку 

 2

0

( ) .
m

j j

i

N  


    

Требуется найти такой вектор 
1 3 1

2 2 2

( , , , )T

n
k k k k


  , который миними-

зирует невязку N. В силу некорректности поставленной задачи [17] бу-

дем минимизировать функционал Тихонова  

    
1 11

22 2
1

1 2

.
n i i

i
i

k k

M k N k h p k
h

 
  



 
    
 
 
 

   (8) 

Здесь   —  положительная постоянная, 0ip  . 

Очевидно, что функционал (8) положительно определен, поэтому, 

у него существует единственный минимум 
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Если набор  j  известен точно, то в качестве решения обратной за-

дачи можно взять 
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В этом случае решение обратной задачи устойчиво [17]. 
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Численный пример. В качестве примера рассмотрим решение 

обратной задачи (минимизации функционала Тихонова) при следую-

щих начальных данных:  

  8

05,669 10 ,  1,  2, 20.q t T u        

Число интервалов дискретизации равно 20, 21N  , 0,05h   . 
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Минимизация функционала (8), как функции 1N   переменной 

проводилась методом случайного поиска, основой которого является 

итерационный процесс 
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где 0n   — величина шага,  
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— реализация 1N  –мерного случайного вектора. 

Начальное приближение   0 5,5, ,5 .k   В качестве числа не-

удачных попыток на очередном шаге найти наименьшее значение ми-

нимизируемой функции бралось 3 .maxN N   

В случае, если все попытки были неудачными, шаг поиска   

уменьшался, и процедура повторялась до 410  . Результаты расче-

тов приведены на рис.1 и рис. 2.  

 

Рис. 1. Решение обратной задачи без использования априорной 

информации: 

─ — значение коэффициента  k x ; ─ — решение обратной задачи 
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На рис. 1. Показаны значения коэффициента  k x , а также резуль-

тат решения обратной задачи.  

На рис. 2 показаны результаты решения обратной задачи 2. Для 

решения использовалась дополнительная информация    0 1k k     

0 . 

В обоих случаях коэффициент   брался равным 0,0001   и 

0,00001  . 

 

Рис. 2. Решение обратной задачи с использованием условия кусочной  

постоянности коэффициента  k x : 

─ — значение коэффициента  k x ; ─ — решение обратной задачи 

 

Выводы. Описанный выше метод показывает высокую эффектив-

ность. При этом следует учесть следующие факты. 

1. Решение уравнения (11) представляет из себя сложную задачу. 

Методы выбора параметра  , описанные в [17–19] трудоемки. По-

этому, приходится решать обратную задачу при нескольких значениях 

параметра регуляризации  . Из полученных результатов выбираем 

наиболее соответствующего априорным представлениям о решении. 

2. Если извечна некоторая информация о решении, ее полезно ис-

пользовать при произведении вычислений. 
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The inverse problem of restoring the thermal conductivity coefficient of a nonlinear para-

bolic equation by the final temperature distribution, which serves as a mathematical model 

for the problem of determining structural defects, is investigated. An algorithm for numer-

ical solution of the problem is proposed. A numerical example is considered. 
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