Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости

Галанин М. П. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ухова А. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-105124


Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях


Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.



004.855.5 Нейросетевые методы решения задачи кредитного скоринга

Кадиев А. Д. (МГТУ им.Н.Э.Баумана), Чибисова А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-8192


Продемонстрирован математический вывод представленной модели нейронной сети. Сведение задачи классификации к задаче оптимизации. Произведен разведывательный анализ данных, а также их предобработка для дальнейшего использования в обучении алгоритмов классификации. Были спроектированы архитектуры нейронных сетей, зависящих от функции активации, количества скрытых слоев нейронной сети и количества нейронов в скрытых слоях. Обучено более десяти нейронных сетей, решающих поставленную задачу кредитного скоринга. Произведен расчет времени обучения нейронных сетей. Представлено решение задачи при помощи классических алгоритмов машинного обучения. Можно было заметить, что стандартное отклонение accuracy и ROC AUC для нейронных сетей больше, чем у случайного леса. Это происходит из-за того, что мы выбираем начальные веса случайным образом и градиенты считаем не на всей выборке, а на малых частях, что добавляет некоторую погрешность при обучении. Но эти отклонения были не только в худшую сторону. В лучших ситуациях, по обеим метрикам, нейронные сети показывали результат хуже всего на пару процентов. Произведен анализ резульатов. Сравнительный анализ показывает, что нейронные сети имеют лучшее качество классификации, чем классические алгоритмы машинного обучения, а также, что нейронные сети имеют меньшее время обучения, чем классические алгоритмы машинного обучения. Представлены графики и таблицы, отображающие имеемые результаты.


Кадиев А.Д., Чибисова А.В. Нейросетевые методы решения задачи кредитного скоринга. Математическое моделирование и численные методы, 2022, № 4, с. 81–92.



519.6 Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Рахманкулов Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-7487


В данной работе рассматривается оптимизация перелета спутника малой массы с орбиты Земли на орбиту Марса под солнечным парусом. Оптимизация управления углом установки солнечного паруса проводится с использованием принципа максимума Понтрягина при минимизации времени перелета. В отличие от предшествующих работ на эту тему решение краевой задачи, к решению которой сводится принцип максимума, получено методом пристрелки. Программа расчета написана на языке программирования С++. Несмотря на вычислительные сложности, возникающие при использовании метода пристрелки, удалось добиться хорошей сходимости метода Ньютона, лежащего в основе алгоритма. Проведен анализ точности полученных результатов и показана возможность применения метода пристрелки при решении подобных задач. Проведено сравнение с данными ранее опубликованных работ. Несмотря на некоторые допущения, использованные при разработке алгоритма расчета, работа имеет свою ценность в плане оценки возможности использования метода пристрелки, дающего наиболее точные численные результаты оптимизации.


Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.2 Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения

Облакова Т. В. (МГТУ им.Н.Э.Баумана), Алексеев Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-4862


Работа посвящена сравнению различных методов моделирования и применения фрактального броуновского движения в задачах анализа временных рядов. Реализованы программные модули, генерирующие траектории фрактального броуновского движения с использованием методов стохастического представления, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с точки зрения их сложности и качества получаемых траекторий. Показатель Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализована аппроксимация временных рядов фрактальным броуновским движением с помощью степенной функции для последующего применения алгоритма линейного прогнозирования, основанного на теореме о нормальной корреляции. Установлено, что с помощью представленной аппроксимации удается добиться удовлетворительного прогноза валютного курса на несколько значений вперед.


Облакова Т.В., Алексеев Д.С. Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения. Математическое моделирование и численные методы, 2022, № 4, с. 48–62



621.464.3 Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока сторон

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Данилов Н. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-313


Для решения проектной задачи разработана математическая модель функционирования системы синхронизации исполнительных органов на основе дроссельного делителя потока. Приводится решение задачи оптимизации времени рассогласования относительного перемещения исполнительных органов при наличии внешних знакопеременных силовых воздействий, выполненное с помощью генетического алгоритма и уточненное с помощью метода Нелдера-Мида


Бушуев А.Ю., Данилов Н.А. Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока. Математическое моделирование и численные методы, 2022, № 2, с. 3–15



519.8 Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава

Тягунов А. Г. (Уральский Федеральный Университет), Зейде К. М. (Universidad Politècnica Salesiana/University of Genoa), Мильдер О. Б. (Уральский Федеральный Университет), Тарасов Д. А. (Уральский Федеральный Университет)


doi: 10.18698/2309-3684-2023-2-332


В работе производится построение математической модели термо-временной эволюции кластера в расплаве жаропрочного никелевого сплава ЖС6У. Формулируется начально-краевая задача с движущейся границей, для решения которой применяется численное моделирование методом трассировки траектории частиц, а для описания эволюционных процессов используется ряд классических физических теорий. Для проверки точности модели привлекается физический эксперимент построения политерм и изотерм электросопротивления рассматриваемого сплава. Подтверждено, что модель броуновской диффузии и теория проводимости Друде применимы для описания, как временной, так и температурной эволюции кластера. Так же оправдал себя подход к моделированию на основе «твердых шаров». По результатам моделирования, во временном диапазоне от 1690 до 1752 К количество частиц в составе кластера меняется от 5000 до 2000, средняя динамическая вязкость кластера изменяется от 3 до 2 *1010 Па*с, однако предполагается, что центральная часть существенно плотнее периферии, радиус кластера изменяется от 24 до 18, радиус свободной зоны вокруг кластера – от 56 до 43. Определены направления дальнейшего развития модели.


Тягунов А.Г., Зейде К.М., Мильдер О.Б., Тарасов Д.А. Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава. Математическое моделирование и численные методы, 2023, № 2, с. 3–32.



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



519.6 Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2023-1-3242


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.



<< 2 >>