517.9:539.3:519.6 Numerical simulation of absolutely flexible bAR motion in the air flow

Sorokin F. D. (Bauman Moscow State Technical University), Nizametdinov F. R. (Bauman Moscow State Technical University)

ABSOLUTELY FLEXIBLE BAR, AERODYNAMIC LOAD, FINITE ELEMENT, NUMERICAL INTEGRATION, DYNAMIC INSTABILITY, AUTOOSCILLATION


doi: 10.18698/2309-3684-2016-1-316


The article offers the calculation algorithm of deflected mode of an absolutely flexible bar interacting with the external air flow. The algorithm is based on the replacement of the continual mechanical system by the discrete set of rectilinear finite elements and concentrated masses. The authors show differential equations of mass motion with allowance for an aerodynamic load and dissipative forces and integrate them by numerical method. That made it possible to find both the equilibrium position of the flexible bar in the flow, and the critical flow velocity which causes violent bar vibrations in case of its excess.


[1] Svetlitskyy V.A. Mekhanika absolyutno gibkikh sterzhney [Mechanics of absolutely flexible bars]. Moscow, Moscow Aviation Institute Publ., 2001, 432 p.
[2] Svetlitskyy V.A. Mekhanika sterzhney. Dinamika [Mechanics of bars. Dynamics]. Moscow, Higher school Publ., 1987, vol. 2, 304 p.
[3] Sorokin F.D. Izvestiya RAN — Proceedings of RAS. MTT, 1994, no. 1, pp. 164–168.
[4] Shklyarchuk F.N., DanilinA. N. Izvestiya Tulskogo Gosudarstvennogo universiteta. Tekhnicheskiye nauki — Proceedings of Tula State University.Technical Science, 2013, vol. 11, pp. 188–197.
[5] Wang X., Lou W.J. Numerical Approach to Galloping of Conductor. Proc. of the 7−th Asia-Pacific. Conference on Wind Engineering. Taipei, Taiwan, 2009, 8 p.
[6] Ivanova O. A. Nauka i obrazovaniye. Elektronnyy Zhurnal — Science and Education.
Electronic journal, 2013, no. 9. Available at: http:// technomag.bmstu.ru/doc/602290.html
[7] Vanko V.I., Marchevskyy I. K., Izvestiya visshikh uchebnikh zavedenyy i energeticheskikh
obyedinenyy SNG — Proceedings of institution of higher education and power associations of the CIS, 2014, no. 6, pp. 14–23.
[8] Shehata, A. Y., El Damatty, A. A. Wind and Structures, 2008, no. 11(3), pp. 193–208.
[9] Shehata, A.Y., El Damatty, A.A., Savory, E . Finite Elem. Anal. Des., 2005, no. 42, pp. 71–89.
[10]Hamada, A., and El Damatty, A. A Computers and Structures, 2011, no. 89 (11–12), pp. 986–1003.
[11]Zylyov V.B. Vychislitelniye metody v nelineynoy mekhanike konstruktsyy [Computational approach in nonlinear mechanics of constructions]. Moscow, NITS Inzhener, 1999, 145 p.
[12]Wu S.R. Comput. Methods Appl. Mech. Engrg, 2006, no. 195, pp. 5983-5994.
[13]Lilien J.L., Snegovski D. Proc. Vth Cable Dynamics Symp., Santa Margherita, 2003, pp. 313–318.
[14]Marchevskii I.K., Ivanova O.A. Journal of Machinery Manufacture and Reliability, 2009, vol. 38, no. 5, pp. 420–424.
[15]Vladimirov I.Y., Korchagin N.N., Savin, A.S. Matematicheskoye modelirovaniye i chislennyye metody — Mathematical Modeling and Computational Methods, 2015, no. 3, pp. 41–57.
[16]DyakonovV.P. Programmirovaniye i matematicheskiy evychisleniya [Programming and mathematical calculations]. Мoscow, DMK-Press Publ., 2008, 574 p.
[17]Sokolov A. I. Nauka i obrazovaniye. Elektronnyy Zhurnal — Science and Education. Electronic journal, 2008, no. 4. Available at: http://technomag.edu.ru/doc/87224.html


Sorokin F., Nizametdinov F. Numerical simulation of absolutely flexible bAR motion in the air flow. Маthematical Modeling and Coтputational Methods, 2016, №1 (9), pp. 3-16



Download article

Колличество скачиваний: 181