doi: 10.18698/2309-3684-2014-3-111125
Рассмотрено появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории моделей «реакция — диффузия». Исследованы динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.
[1] Николис Г., Пригожин И. Самоорганизация в неравновесных системах. Москва, Мир, 1979, 512 с.
[2] Хакен Г. Синергетика. Москва, Мир, 1980, 406 с.
[3] Курдюмов С.П. Режимы с обострением: эволюция идеи. Малинецкий Г.Г., ред. Москва, Наука, 1999.
[4] Turing A. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, 1952, vol. 237, рp. 37−72.
[5] Kuramoto Y., Tsuzuki T. On the formation of dissipative structures in reactondiffusion systems. Prog. Theor. Phys., 1975, vol. 54, no. 3, рp. 687−699.
[6] Кащенко С.А. О квазинормальных формах для параболических уравнений с малой диффузией. ДАН СССР, 1988, т. 229, № 5, с. 1049−1052.
[7] Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г, Самарский А.А. Структуры и хаос в нелинейных средах. Москва, Физматлит, 2007, 488 с.
[8] Benettin G., Galgani L., Giorgilli A., Stretcin J.M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1, 2. Mechanica, 1980, vol. 15, no. 1, рp. 9−30.
[9] Боколишвили И.Б., Малинецкий Г.Г. О сценариях перехода к хаосу в одномерных отображениях с острой вершиной. Москва, ИПМ, 1987, 28 с.
[10] Feigenbaum M.J. Universal behavior in nonlinear systems. Los Alamos Sci., 1980, vol.1, no. 1, рp. 4−27.
[11] Хакен Г. Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. Москва, Мир, 1985, 419 с.
[12] Малинецкий Г.Г., Фаллер Д.С. Сценарии перехода к хаосу в двухмодовой системе для систем «реакция–диффузия». ИПМ им. М.В. Келдыша, Препринты, Москва, 2013, № 67, 36 c. URL: http://library.keldysh.ru/preprint.asp?id=2013-67
Малинецкий Г. Г., Фаллер Д. С. Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки. Математическое моделирование и численные методы, 2014, №3 (3), c. 111-125
Количество скачиваний: 992