532.5.013.2+534.113 Mathematical methods of identification of hydrodynamic loads at impact on water based on one-dimensional theories of elastic wave propagation in rods

Yeroshin V. A. (Lomonosov Moscow State University), Plyusnin A. V. (JSC MIC NPO Mashinostroyenia)

WATER IMPACT, ELASTIC WAVES, FINITE-DIFFERENCE SCHEME.


doi: 10.18698/2309-3684-2018-3-6794


The problem of longitudinal and transversal oscillations of elastic cylinder generated by high velocity impact of the forward end on the water surface is considered from the point of the identification of hydrodynamic forces by treating optical measuring data of the opposite end motions. The statements of the direct and reverse problems are derived, based on the one-dimensional theories of Saint-Venan and Timoshenko, which provides the hyperbolicity of the governing equations. The results of the direct problem calculations by the finite-difference method are compared with the available experimental traces and show rather accurate qualitative coincidence.


[1] Babkin A.V., Kolpakov B.I., Okhitin V.N., Selivanov V.V. Chislennye metody v zadachah vzryva i udara [Numerical methods in explosion and shock problems]. Moscow, BMSTU Publ., 2000. 516 p.
[2] Bazhenov V.G., Kotov V.L. Matematicheskoe modelirovanie nestacionarnykh processov udara i pronikaniya isesimmetrichnykh tel i identifikacii svoistv gruntovykh sred [Mathematical modeling of unsteady impact and penetration processes of axisymmetric bodies and identification of soil media properties]. Moscow, FIZMATLIT Publ., 2011. 208 p.
[3] Oden J.T. Finite elements of nonlinear continua. New York, McGraw-Hill Book Company, 1972. –464p.
[4] Alyev G.A. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1988, no. 1, pp.17-20.
[5] Terentev A.G., Chechnev A.V. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1985, no. 2, pp.104-107.
[6] Nigmatulin R.I. Mekhanika sploshnoy sredy. Kinematika. Dinamika. Termodinamika. Statisticheskaya dinamika [Continuum Mechanics. Kinematics. Dynamics. Thermodynamics. Statistical Dynamics]. Moscow, GEOTARMedia Publ., 2014, 640 p.
[7] Dimitrienko Yu.I. Tensor Analysis and Nonlinear Tensor Functions. Kluwer Academic Publishers, 2002. 662p.
[8] Dimitrienko Y.I. Nelineinaya mehanika sploshnoi sredy [Nonlinear continuum mechanics]. Moscow, PHYSMATH, 2009, 629 p.
[9] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovymekaniki tverdykh sred [Continuum mechanics. In 4 vols. Vol. 4. Fundamentals of mechanics of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[10] Kuvyrkin G.N. Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii [Thermomechanics of a deformable solid body during highintensity loading]. Moscow, BMSTU Publ., 1993. 142 p.
[11] Selivanov V.V. Mekhanika razrusheniya deformirovaniya tela [Fracture mechanics of deformable body]. Moscow, BMSTU Publ., 2006. 424 p.
[12] Eroshin V.A. Izv. RAN, MJG – News of the RAS. FGM, 1992, no. 5, pp. 20-30.
[13] Shorygin O.P. Pogruzhenie v zhidkost tel vrasheniya prosteishikh form pod uglom k svobodnoi poverkhnosti. Neustonovivsheecya techeniya vody s bolshimi skorostyami [Immersion in liquid bodies of rotation of the simplest forms at an angle to the free surface. The transient flow of water at high speeds]. Moscow, Nauka Publ., 1973, pp. 397-403.
[14] Bivin Yu.K., Glukhov Yu.M., Permyakov Yu.V. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1985, no. 6, pp.3-9.
[15] Sedov L.I. Ploskie zadachi gidrodinamiki i aerodinamiki [Flat problems of hydrodynamics and aerodynamics]. Moscow, Nauka Publ.. 1980. 440 p.
[16] Logvinovich G.V., Yakimov Yu.L. Pogruzheniet tel v zhidkost s bolshimi skorostyami. Neustonovivsheecya techeniya vody s bolshimi skorostyami [Immersion of solids in liquid at high speeds. The transient flow of water at high speeds]. Moscow, Nauka Publ., 1973, pp. 85-92.
[17] Sagomonyan A.Ya. Vestnik MGU, matem., mekh. – Bulletin MSU, mathem., mech., 1959, no. 2, pp. 49-53.
[18] Poruchikov V.B. PMM – AMM, 1964, vol. 28, issue 4, pp. 797-800.
[19] Poruchikov V.B. PMM – AMM, 1973, vol. 37, issue 1, pp. 180-187.
[20] Zhuravlev Yu.F. Sb. rabot po gidridinamike – Sat. works on hydrodynamics, 1959, pp. 227-232.
[21] Osminin R.I. Trudy TSAGI – Processing of the TSAGI, 1976, issue 1741, pp. 19- 23.
[22] Eroshin V.A., Konstantinov G.A., Romenenkov N.I. Yakimov Yu.L. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1988, no. 2, pp. 21-25.
[23] Eroshin V.A., Konstantinov G.A., Romenenkov N.I. Yakimov Yu.L. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1990, no. 5, pp. 88-94.
[24] Eroshin V.A., Samsonov V.A. PMM – AMM, 2016, no. 5, pp. 1020-1027.
[25] Grumondz V.T., Zhuravlev Yu.F., Paryshev E.V., Sokolyanskiy V.P., Shorygin V.P. Gidrodinamika i dinamika vysokoskorostnogo dvizheniya tel v zhidkosti [Hydrodynamics and dynamics of high-speed motion of bodies in fluid]. Moscow, Nauka Publ., 2013, 574 p.
[26] Grumondz V.T., Polovinkin V.V., Yakovlev G.A. Teoriya dvizheniya dvusrednykh apparatov. Matematicheskie modeli i metody issledovaniya [Theory of motion of two-medium devices. Mathematical models and research methods]. Moscow, Vuzovskaya kniga Publ., 2012. 644 p.
[27] Grumondz V.T. Unmanned Vehicle Configuration. Multicriteria Approaches in Mechanical Engineering. Multicriteria Design. Optimization and Identification. Dordrecht; Boston; L.; Kluwer Acad. Publ., 2000, p.73-80.
[28] Tarasov E.V., Uvarov G.V. Vysokoskorostnaya podvodnaya raketa. Problemy i algoritmy proekt-nyh issledovanij sistemy «kaverna – podvodnaya raketa» [High-speed underwater missile. Problems and algorithms of design studies of the "kaverna – underwater rocket" system»]. Moscow, Vuzovskaya kniga Publ., 2013. 252 p.
[29] Gurevich M.I. Teoriya struj ideal'noj zhidkosti [Theory of jets in an ideal fluid]. Moscow, Nauka Publ., 1979. 536 p.
[30] Yakimov YU.L., Eroshin V.A., Romanenkov N.I. Modelirovanie dvizheniya tela v vode s uchetom ee szhimaemosti. Nekotorye voprosy mekhaniki sploshnoj sredy [Modeling of body motion in water taking into account its compressibility. Some questions of continuum mechanics]. Moscow, MSU Publ., 1978, pp. 29- 33
[31] Eroshin V.A., Romanenkov N.I., Serebryakov I.S., Yakimov Yu.L. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1980, no. 6, pp.44-51.
[32] Eroshin V.A., Plyusnin A.V., Sozonenko YU.A., Yakimov Yu.L. Izv. AN SSSR, MJG – News of the USSR AS. FGM, 1989, no. 6, pp.164-167.
[33] Eroshin V.A. Ehksperimental'noe izuchenie voln szhatiya, vozbuzhdayushchihsya v uprugom cilindre pri vhode v vodu. Prikladnye problemy prochnosti i plastichnosti [Experimental study of compression waves excited in an elastic cylinder at the entrance to water. Applied problems of strength and plasticity]. Nizhnij Novgorod, Nizh.GU Publ., 1990, pp.82-88.
[34] Serebryakov I.S. Ustrojstvo dlya opredeleniya uskoreniya [Device for determining acceleration]. A.s. 638897 SSSR. Otkrytiya, izobreteniya, prom. obrazcy i tov. znaki, 1978, №47.
[35] Eroshin V.A., Makarshin V.M., Konstantinov G.A., Romanenkov N.I., Yakimov Yu.L., Plyusnin A.V. Sposob opredeleniya parametrov dvizheniya ob"ekta s zerkal'noj poverhnost'yu i ustrojstvo dlya ego osushchestvleniya [A method for determining the parameters of motion of an object with a mirror surface and a device for its implementation]. A.s. 1486775 SSSR. 15.06.89, B. №22.
[36] Vatul'yan A.O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse problems in solid mechanics]. Moscow, Fizmatlit, 2007. 224 p.
[37] Sellier M. An iterative method for the inverse elasto-static problem. Journal of Fluids and Structures, 2011, v.27, iss.8, pp.1461-1470.
[38] Ellabib A., Nachaoui A. An iterative approach to the solution of an inverse problem in linear elasticity. Mathematics and Computers in Simulation, 2008, v.77, iss.2-3, pp.189-201.
[39] Dimitrienko Yu.I., Yurin Yu.V., Egoleva E.S. Matematicheskoe modelirovanie i chislennye metody – Mathematical Modeling and Computational Methods, 2017, no. 4, pp. 48-59.
[40] Cowper G.R. The Shear Coefficient in Timoshenko’s Beam Theor. Journal of Applied Mechanics, 1966, v.33, №2, p.335-340.
[41] Timoshenko S.P., Yang D.H., Uiver U. Kolebaniya v inzhenernom dele [Fluctuations in engineering]. Moscow, Mashinostroenie Publ., 1985. 472 p.
[42] Timoshenko S.P., Goodier J.N. Theory of Elasticity. McGraw-Hill Education, 1970, 608 p. [In Russ.: Timoshenko S.P., Goodier J.N. Teoriya uprugosti. Moscow, Nauka Publ., 1979, 560 p.].
[43] Slepyan L.I. Nestacionarnye uprugie volny [Non-stationary elastic waves]. Leningrad, Sudostroenie Publ., 1979. 376 p.
[44] Godunov S.K., Ryaben'kij V.S. Raznostnye skhemy. Vvedenie v teoriyu [Difference scheme. Introduction to theory]. Moscow, Nauka Publ., 439 p.
[45] Plyusnin A.V. Dinamicheskie processy v uprugom cilindre pri ego udare o poverhnost' vody [Dynamic processes in an elastic cylinder with its impact on the surface of the water]. The dissertation on competition Uch. step. kand. Fiz.- Mat.Sciences on special. 01.02.04. mechanics of deformable solid. Moscow, Moscow state University, 1991. 167s.
[46] Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach [Methods for solving incorrect problems]. Moscow, Nauka Publ., 1979, 288 p.


Ерошин В.А., Плюснин А.В. Математические методы идентификации гидродинамических нагрузок при ударе о воду, основанные на одномерных теориях распространения упругих волн в стержнях. Математическое моделирование и численные методы, 2018, № 3, с. 67–94.



Download article

Колличество скачиваний: 40