519.6 Ψ-transformation optimization method in сomparison with canonical particle swarm optimization method

Bushuev A. Y. (Bauman Moscow State Technical University), Maremshaova A. A. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia)

Ψ-TRANSFORMATION OPTIMIZATION METHOD, GLOBAL OPTIMIZATION METHODS, PARTICLE SWARM OPTIMIZATION METHOD


doi: 10.18698/2309-3684-2018-3-2237


When dealing with many applications there is a problem of finding the global extremum. Of particular relevance are the optimization methods that allow solving problems effectively when the objective function depends on a complex mathematical model that requires large computing resources for its solution. In this paper, a comparison is made between the Ψ-transformation optimization method and the canonical particle swarm optimization method. The flaws of some known algorithms of the Ψ-transformation optimization method are revealed and a modification based on the replacement of a random law with uniform distribution for generating statistical realizations on the second and subsequent iterations of the standard algorithm by the normal distribution law with parameters determined by the results of the previous iteration is proposed. On the basis of the extensive computational experiment, the advantage of the modified algorithm of the Ψ-transformation optimization method is shown in comparison with algorithm of the canonical particle swarm method.


[1] Gadahabadze I.G., Dzhibladze N.I., Chichinadze V.K. Optimal'noe proektirovanie ehlektronnyh skhem metodom Ψ − preobrazovaniya – Automation and telemechanics, 1978, issue 4, pp. 86–94.
[2] Dolgui A., Sysoev V. RAIRO Operations Research, 2003, vol. 37, p. 119–141.
[3] Dolgui A., Ofitserov D. Actes de Deuxièmes Journées Francophone de Recherche Opérationnelle (FRANCORO II), 6-8 avril 1998, Sousse, CPU Press, 2000, pp. 25–32.
[4] Dimitrienko Yu.I., Drogolyub A.N., Gubareva E.A. Optimizaciya mnogokomponentnyh dispersno-armirovannyh kompozitov na osnove splajn-approksimacii – Science and Education: scientific edition of Bauman MSTU, 2015, no. 2, pp. 216–233.
[5] Bushuev A.Yu., Timofeev V.N. Zadacha proektirovaniya mnogoslojnogo teplozashchitnogo pokrytiya – Engineering journal: Science and innovation, 2012, no. 2(2), pp. 33–39.
[6] Zajcev A.A., Kurejchik V.V., Polupanov A.A. Obzor ehvolyucionnyh metodov optimizacii na osnove roevogo intellekta – News of SFedU. Technical science, 2010, issue 12(113), pp. 7–12.
[7] Ermakov B.S. Optimizaciya roem chastic v obuchenii iskusstvennyh nejronnyh setej – System analysis and logistics, 2017, no. 1(14). pp. 3–9.
[8] Ragulina E.V. Issledovanie metoda roya chastic dlya zadach marshrutizacii transporta na primere sostavleniya raspisaniya dvizheniya agentov – Proceedings of the conference "Perspective Information Technologies for Drink-2012", 2012, pp. 255–257.
[9] Skobcov Yu.A., Ehl'-Hatib S.A. Komp'yuternaya sistema segmentacii medicinskih izobrazhenij metodom roya chastic – Bulletin of NTU "KhPI", 2015, no. 33(1142), pp. 144–151.
[10] Nejdorf R.A., Derevyankina A.A. Reshenie zadach raspoznavaniya metodom royashchihsya chastic s deleniem roya – News of SFedU. Technical science, 2010, no. 7(108), pp. 21–28.
[11] Sivkov A.S. Sivkov V.S. Analiz primenimosti metoda roya chastic v zadachah sinteza antenn s konturnymi diagrammami napravlennosti –Infocommunication technologies, 2014, vol. 12, no. 1, pp. 85–89.
[12] Minaeva YU.V. Adaptivnaya modifikaciya metoda roya chastic na osnove dinamicheskoj korrekcii traektorii dvizheniya osobej v populyacii – Business Informatics, 2016, no. 4(38), pp. 52–59.
[13] Oficerov D.V. Metod diskretnogo Ψ − preobrazovaniya dlya resheniya zadach celochislennogo programmirovaniya – Journal of computational mathematics and mathematical physics, 1990, vol. 30, no. 2, pp. 231–242.
[14] Chichinadze V.K. Reshenie nevypuklyh nelinejnyh zadach optimizacii [The solution of nonlinear non-convex optimization problems]. Moscow, Nauka Publ., 1983, 25 p.
[15] Sulimov V.D., Shkapov P.M., Goncharov D.A. Primenenie gibridnyh algoritmov k ehkstremal'nym zadacham na sobstvennye znacheniya lagranzhevyh dinamicheskih system – Mathematical modeling and numerical methods, 2014, no. 2, pp.101–114.
[16] Shuvalov R.I. Reshenie zadach optimizacii metodom psi-preobrazovaniya – Collection of reports of the Second Scientific and Practical Conference of Young Specialists and Students in Memory of the Chief Designer of Academician V.I. Kuznetsov, 2004, pp. 147–155.
[17] Karpenko A.P., Seliverstov E.YU. Obzor metodov roya chastic (PSO) dlya zadachi global'noj optimizacii – Science and Education: scientific edition of Bauman MSTU, 2009, no. 3.
[18] Bushuev A.Yu., Farafonov B.A. Matematicheskoe modelirovanie processa raskrytiya solnechnyh batarej bol'shoj ploshchadi – Mathematical modeling and numerical methods, 2014, no. 2, pp. 101–114.


Бушуев А.Ю., Маремшаова А.А. Сравнение модифицированного метода Ψ-преобразования и канонического метода роя частиц. Математическое моделирование и численные методы, 2018, № 3, с. 22–37.



Download article

Колличество скачиваний: 44