519.8 Probability model of meeting an attack of different types of weapon

Chuev V. U. (Bauman Moscow State Technical University), Dubogray I. V. (Bauman Moscow State Technical University), Anisova T. L. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2018-1-9097

On the basis of the continuous Markov processes theory we have developed a probabilistic model of the two-way battle of one combat unit against two enemy units of different types. The authors have obtained calculation formulas for computing current and final states under various firing tactics of the unit. We have determined the applicability areas for different combat tactics of the unit. The study shows that the right choice of the firing tactics can considerably increase the probability of the victory in the battle. The developed model of the two-way battle may be used for estimating the combat effectiveness of the multipurpose weaponry units.

[1] Aleksandrov A.A., Dimitrienko Yu.I. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 1 (1), pp. 3–4.
[2] Zarubin V.S., Kuvyrkin G.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 1 (1), pp. 5–17.
[3] Venttsel E.S. Issledovanie operatsiy: zadachi, printsipy i metodologiya [Research operations: tasks, principles and methodology]. Moscow, URSS Publ., 2007, 208 p.
[4] Tkachenko P.N. Matematicheskie modeli boevykh deystviy [Mathematical models of military operations]. Moscow, Sovetskoe radio Publ., 1969, 240 p.
[5] Chuev Yu.V. Issledovanie operatsiy v voennom dele [Investigation of military operations]. Moscow, Voenizdat Publ., 1970, 270 p.
[6] Bretnor R. Decisive warfare: a study in military theory. New York, Stackpole Books, 1969, 192 p.
[7] Hillier F.S., Lieberman G.J. Introduction to Operations Research. New York, McGraw-Hill, 2005, 998 p.
[8] Shamahan L. Dynamics of Model Battles. New York, Physics Department, State University of New York, 2005, pp. 1–43.
[9] Taylor J.G. Force-on-force attrition modeling. Military Applications Section of Operations Research Society of America, 1980, 320 p.
[10] Glushkov I.N. Programmnye produkty i sistemy — Software & Systems, 2010, no. 1, pp. 1–9.
[11] Alekseev O.G., Anisimov V.G., Anisimov E.G. Markovskie modeli boya [Markov's combat models]. Moscow, the USSR Ministry of Defense, 1985, 85 p.
[12] Venttsel E.S. Teoriya veroyatnostey [The theory of probability]. Moscow, Knorus Publ., 2016, 658 p.
[13] Venttsel E.S., Ovcharov L.A. Teoriya sluchaynykh protsessov i ee inzhenernye prilozheniya [The theory of random processes and its engineering applications]. Moscow, Knorus Publ., 2015, 448 p.
[14] Chuev V.Yu., Dubogray I.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 1, pp. 89–104.
[15] Chuev V.Yu., Dubogray I.V. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 4, pp. 16–28.
[16] Chuev V.Yu., Dubogray I.V. Modeli dinamiki srednikh dvukhstoronnikh boevykh deystviy mnogochislennykh gruppirovok [Dynamics models of the average bilateral military operations of numerous groupings]. Saarbryukken, LAP LAMBERT Academic Publ., 2014, 72 p.

Чуев В.Ю., Дубограй И.В., Анисова Т.Л. Вероятностная модель отражения атаки разнотипных средств. Математическое моделирование и численные методы, 2018, № 1, с. 90-97

Download article

Колличество скачиваний: 40