51-74 Numerical simulation of thermal conditions of the Russian instrument complex ACS, integrated into European ExoMars spacecraft

Semena N. P. (Институт космических исследований РАН)

MATHEMATICAL THERMAL MODELING, THERMAL CONDITION OF SPACE DEVICES, NODAL THERMAL MODEL, INVERSE THERMAL PROBLEM, EXOMARS MISSION


doi: 10.18698/2309-3684-2018-1-5569


The article describes the problems and results of the numerical simulations of the thermal conditions of the Russian instrument complex ACS (Atmospheric Chemistry Suite) in the course of its integration into the European ExoMars spacecraft. The main problem was to make consistent the mathematical models of the ACS and spacecraft. This problem has been solved using the ACS nodal mathematical model. The algorithm for generating an ACS mathematical model, the details of its integration into the European spacecraft general model, its capabilities and limitations are described, as well as the results of numerical simulation of the ACS thermal conditions and their comparison with the flight telemetry.


[1] Semena N.P. Kosmicheskie issledovaniya — Cosmic Research, 2018, no. 4, pp. 311–325.
[2] Vago J., Witasse O., Svedhem H., Baglioni P., Haldemann A., Gianfiglio G., Blancquaert T., Mccoy D., de Groot R. Solar System Research, 2015, vol. 49, no. 7. DOI: 10.1134/S0038094615070199
[3] Papalexandris M.V., Milman M.H., Levine M.B. American Institute of Aeronautics and Astronautics Journal, 2002, vol. 40, no. 7. DOI: 10.2514/2.1808
[4] Korablev O., Montmessin F., Trokhimovskiy A., Fedorova A.A.,Shakun A.V., Grigoriev A.V., Moshkin B.E., Ignatiev N.I. et al. Space Science Reviews, 2018, vol. 2014, no. 1. DOI: 10.1007/s11214-017-0437-6
[5] Renault H., Sergent N., Chevallier M., Kutrowski N., Bacchetta A., Temperanza D. CEAS Space Journal, 2015, vol. 7, no. 2, pp. 105–118.
[6] Zykov A.A. Osnovy teorii grafov [Fundamentals of the Graphs Theory]. Moscow, Vuzovskaya kniga Publ., 2004, 664 p.
[7] Semena N.P., Konovalov A.A. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2007, vol. 14, no. 1, pp. 87–98.
[8] Gueymard C.A. Solar Energy, 2004, vol. 76, no. 4. DOI: 10.1016/j.solener.2003.08.039
[9] Stephens G.L., O'Brien D., Webster P.J., Pilewski P., Kato S., Li J. Reviews of Geophysics, 2015, vol. 53, no. 1. DOI: 10.1002/2014RG000449
[10] Semena N.P. Teplofizika i aeromekhanika — Thermophysics and Aeromechanics, 2014, vol. 21, no. 1, pp. 47–58.
[11] Anh N.D., Hieu N.N., Chung P.N., Anh N.T. Applied Thermal Engineering, 2016, vol. 94, pp. 607–614.
[12] Semena N.P., Kozlov O.E., Serbinov D.V. Kosmonavtika i raketostroenie — Cosmonautics and Rocket Engineering, 2016, no. 2, pp. 133–141.
[13] ITP Engines UK Ltd. ESATAN-TMS Thermal User Manual, 2012.
[14] Alifanov O.M. Obratnye zadachi teploobmena [Inverse Problems of HeatExchange]. Moscow, Mashinostroenie Publ., 1988, 280 p.
[15] Semena N.P., Serbinov D.V. Teplovye protsessy v tekhnike — Thermal Processes in Engineering, 2016, vol. 8, no. 9, pp. 423–431.
[16] Svedhem H., Vago J.L., Bruinsma S., Müller-Wodarg I. Exomars Trace Gas Orbiter Provides Atmospheric Data During Aerobraking into Its Final Orbit. American Astronomical Society, 49th Annual Division for Planetary Sciences, 2017, no. 10. Available at: http://adsabs.harvard.edu/abs/2017DPS....4941801S (accessed June 20, 2018).


Семена Н.П. Численное моделирование тепловых режимов российского приборного комплекса АЦС, интегрированного в европейский космический аппарат ExoMars. Математическое моделирование и численные методы, 2018, № 1, с. 55-69



Download article

Колличество скачиваний: 28