550.344 Mathematical modeling of one-dimensional non-linear motion in a fluid-saturated porous medium

Holmurodov A. E. (Каршинский Государственный университет, Узбекистан), Dilmuradov N. D. (Karshi State University)

NON-LINEAR ONE-DIMENSIONAL MOTION, POROUS-ELASTIC MEDIA, ENERGY DISSIPATION, TWO-SPEED CONTINUUM, NUMERICAL ALGORITHM, COMPUTING EXPERIMENT.


doi: 10.18698/2309-3684-2018-1-315


The paper focuses on a mathematical model for propagation of the one-dimensional non-linear waves in fluid-saturated porous media where energy dissipation caused by intercomponent friction takes place. The existence and uniqueness theorem of the classical solution to the porous-elastic media dynamic problem is proved. A difference scheme for solving this problem is submitted. The study gives the results of numerical simulations of seismic wave propagation for a test medium model.


[1] Frenkel Ya.I. Izvestiya Academii Nauk SSSR — Bulletin of the Academy of Sciences of the USSR. Geophysics Series, 1944, vol. 8, no 4, pp. 133–150.
[2] Biot M.A. Journal of the Acoustical Society of America, 1956, vol. 28, no. 2, pp. 168–178.
[3] Dorovskiy V.N. Geologiya i geofizika — Russian Geology and Geophysics, 1989, no.7, pp. 39–45.
[4] Blokhin A.M., Dorovskiy V.N. Problemy matematicheskogo modelirovaniya v teori mnogoskorostnogo kontinuuma [Problems of mathematical modeling in the theory of multispeed continuum]. Novosibirsk, Siberian Branch of the Russian Academy of Science publishing house, 1994, 183 p.
[5] Nigmatulin R.I. Dinamika mnogofaznykh sred. Chast 1 [Dynamics of polyphase media. Part 1]. Moscow, Nauka Publ., 1987, 464 p.
[6] Dimitrienko Yu.I., Bogdanov I.O. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 2. pp. 3–27.
[7] Dimitrienko Yu.I., Ivanov M.Yu. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, 2008, no. 1, pp. 39–56.
[8] Landau L.D. Zhurnal eksperimentalnoy i teoreticheskoy fiziki — Journal of the Experimental and Theoretical Physics, 1941, vol. 11, pp. 592–602.
[9] Imomnazarov Kh., Imomnazarov Sh., Korobov P., Kholmuradov A. Bulletin of the Novosibirsk Computing Center. Series: Mathematical Modeling in Geophysics, 2015, no. 18, pp. 1–8.Математическое моделирование одномерного нелинейного движения… 15
[10] Carcione J.M. Wave fields in real media: wave propagation in anisotropic, anelastic porous and electromagnetic media. New York, Elsevier, 2007, 539.
[11] Molotkov L.A. Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modeley Bio i sloistykh sred. [Investigation of wave propagation in porous and fissured media on the basis of the effective Biot models and stratified media]. St. Petersburg, Nauka Publ., 2001, 348 p.
[12] Evans L.C. Partial Differential Equations. AMS, 1998, 466 p.
[13] Kaltenbacher B. Control of Coupled Partial Differential Equations International Series of Numerical Mathematics, 2007, vol. 155, pp. 193–215.
[14] Kolmogorov A.N., Fomin S.V. Elementy teorii funktsiy i funktsionalnogo analiza [Elements of the function theory and functional analysis]. Moscow, Fizmatlit Publ., 2004, 572 p.
[15] Hutson V., Pym J., Cloud M. Applications of Functional Analysis and Operator Theory. Vol. 200. Elsevier Science, 2005, 432 p.
[16] Samarskiy A.A. Vvedeniye v teoriyu raznostnykh skhem [Introduction to the theory of difference schemes]. Moscow, Nauka Publ., 1977, 656 p.
[17] Dilmuradov N., Kholmurodov A. Nekotorye pryamye i obratnye zadachi dlya uravneniy dvizheniya dvukhskorostnogo kontiniuuma [Some direct and inverse problems for two-speed continuum media motion equations]. Mezhdunar. nauchn. konf. “Aktualnye problemy prikladnoн matematiki i informatsionnykh tekhnologiy — Al'-Horezmi 2016” [The International scientific conference “Modern Problems of Applied Mathematics and Information Technologies — Al-Khorezmiy 2016”]. November 9–10, 2016, Bukhara, Uzbekistan, pp.147–149.


Холмуродов А.Э., Дильмурадов Н. Математическое моделирование одномерного нелинейного движения в насыщенной жидкостью пористой среде. Математическое моделирование и численные методы, 2018, № 1, с. 3-15



Download article

Колличество скачиваний: 57