531.6.011.32:532.582.4:517.958 Special features of vortex diagram in simulation of subsonic detached flow around the semi-infinite equivalent body

Timofeev V. N. (Bauman Moscow State Technical University)

MATHEMATICAL SIMULATION, SUBSONIC DETACHED FLOW, EQUIVALENT BODY, VORTEX DIAGRAM, DISCRETE VORTEX METHOD, BASE PRESSURE


doi: 10.18698/2309-3684-2017-4-7391


The paper introduces some special features of mathematical simulation of subsonic detached flow around the bodies, the flow being localized in the vicinity of the ground shear. The formation of vortex diagram for the semi-infinite equivalent body is examined. The formulae for determining the vector functions of the vortex segments velocity are reduced to a form allowing one to easily pass to the limit as the points of the origin or ends of these segments are moved off to infinity. Furthermore, the study shows the relationships for finding the velocity function vectors of semi-infinite vortex segments and U-shaped vortex lines, the relationships being adapted for computer calculations. Findings of mathematical simulation of the flow around cylindrical bodies with the head part of the ogival form are given.


[1] Belotserkovskiy S.M., Nisht M.I., Kotovskiy V.N., Fedorov R.M. Trekhmernoe otryvnoe obtekanie tel proizvolnoy formy [Three-dimensional detached flow of the bodies of arbitrary form]. Moscow, TsAGI (Central Aerohydrodynamic Institute) Publ., 2000, 265 p.
[2] Lewis R.I. Vortex element methods for fluid dynamic analysis of engineering systems. Cambridge University Press, 2005, 592 p.
[3] Andronov P.R., Guvernyuk S.V., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods of calculation of nonstationary hydrodynamic loads]. Moscow, Institute of Mechanics Lomonosov MSU Publ., 2006, 184 p.
[4] Scheglov G.A. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2009, no. 2, pp. 26–36.
[5] Dergachev S.A., Scheglov G.A. Nauchnyy vestnik MGTU GA — Bulletin of Civil Aviation High Technologies, 2016, no. 223, pp. 19–27. DOI 10.26467/2079-0619-2016--223-19-27
[6] Plyusnin A.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 2, pp. 77–100.
[7] Timofeev V.N. Inzhenernyi zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no. 10. Available at: http://engjournal.ru/ catalog/mathmodel/aero/1246.html (accessed October 17, 2017).
[8] Timofeev V.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 4 (12), pp. 67–83.
[9] Gogish L.V., Stepanov G.Yu. Otryvnye i kavitatsionnye techeniya. Osnovnye svoiystva i raschet modeli [Detached and cavitational flows. Basic properties and model calculation]. Moscow, Nauka Publ., 1990, 384 p.
[10] Timofeev V.N. Matematicheskoe modelirovanie dozvukovogo prostranstvennogo obtekaniya tel [Mathematical simulation of subsonic spatial flow around bodies]. Aktualnye napravleniya razvitiya prikladnoy matematiki v energetike, energoeffektivnosti i informatsionno-kommunikatsionnykh tekhnologiyakh. Trudy mezhdunarodnoy nauchnoy konferentsii, posvyashchennoy 180-letiyu MGTU im. N.E. Baumana [Current trends in the development of applied mathematics in energy, energy efficiency and information and communication technologies. Proceedings of the international scientific conference dedicated to the 180th anniversary of BMSTU]. Moscow, BMSTU Publ., 2010, pp. 198–202.
[11] Timofeev V.N., Bushuev A.Yu. Vestnik SGTU — Vestnik Saratov State Technical University, 2012, no. 1 (64), iss. 2, pp. 11–14.
[12] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom. 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnykh sred [Continuum mechanics. In 4 vols. Vol. 2. Universal laws of continuum mechanics and electrodynamics]. Moscow, BMSTU Publ., 2011, 560 p.
[13] Sobolev S.L. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1992, 432 p.
[14] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 1. Tenzornyy analiz [Continuum mechanics. In 4 vols. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 2011, 464 p.
[15] Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Drofa Publ., 2003, 840 p.
[16] Lifanov I.K. Metod singulyarnykh integralnykh uravneniy i chislennyy eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln) [The method of singular integral equations and numerical experiment (in mathematical physics, aerodynamics, theory of elasticity and diffraction of waves)]. Moscow, LLP Yanus Publ., 1995, 520 p.
[17] Aubakirov T.O., Belotserkovskiy S.M., Zhelannikov A.I., Nisht M.I. Nelineinaya teoriya kryla i ee prilozheniya [Nonlinear wing theory and its applications]. Almaty, Gylym Publ., 1997, 448 p.


Timofeev V.N. Special features of vortex diagram in simulation of subsonic detached flow around the semi-infinite equivalent body. Mathematical Modeling and Computational Methods, 2017, №4 (16), pp. 73-91.



Download article

Колличество скачиваний: 223