539.3 Mathematical modeling of the rotating cylindrical shell torsional vibrations factored in the internal viscous fluid

Khudoynazarov K. K. (Ташкентский государственный технический университет), Burkutboyev S. M. (Ташкентский государственный технический университет)

CYLINDRICAL SHELL, VISCOUS FLUID, TORSIONAL VIBRATIONS, DISPLACEMENT OF POINT, STRAIN, TORQUE, ROTATION, ANGULAR VELOCITY


doi: 10.18698/2309-3684-2017-4-3147


The article introduces a mathematical model of the rotating cylindrical shell torsional vibrations with the viscous fluid flowing inside. We have developed an algorithm for defining the stress-strain state of the considered system’s points. As an example we examine the problem of torsional vibrations of the drill column rotating with constant angular velocity. The article estimates the influence of the internal viscous fluid flow and the centrifugal inertia force on the stressed-strain state of the system.


[1] Gulyaev V.I., Khudoliy S.N., Glushakova O.V. Problemy prochnosti — Strength of Materials, 2009, no. 6, pp. 31–43.
[2] Han J.-H., Kim Y.-J., Karkoub M. Journal of the Acoustical Society of America, September 2013, no. 134 (3), pp. 1920–1931.
[3] Ulitin G.M. Strength of Materials, January 2002, vol. 34, iss. 1, pp. 94–98. Available at: https://link.springer.com/article/10.1023/A%3A1014882621157 (аccessed December 19, 2017).
[4] Ulitin G.M., Pettik Yu.V. Zbіrnik naukovikh prats (galuzeve mashinobuduvannya, budіvnitstvo) — Industrial Machine Building, Civil Engineering, Poltava, Poltava National Technical Yuri Kondratyuk University Publ., 2009, no. 3 (25), vol. 2, pp. 214–218.
[5] Ulitin G.M., Pettik Yu.V. Naukovi pratsi Donetskogo natsionalnogo tehnichnogo universitetu. Ser. Girnicho-geologichna (Proceedings of Donetsk National Technical University. Series: Mining and Geology), 2012, no. 16 (206), pp. 144–148.
[6] Gulyaev V.I., Andrusenko E.N. Problemy prochnosti — Strength of Materials, 2011, no. 3, pp. 19–34.
[7] Gulyaev V.I., Gaydaychuk V.V., Khudoliy S.N. Zbіrnik naukovikh prats Ukraїnskogo naukovo-doslіdnogo ta proektnogo іnstitutu stalevikh konstruktsіy іmenі V.M. Shimanovskogo (Proceedings of V. Shimanovsky Ukrainian Research and Design Institute of Steel Construction), 2009, no. 4, pp. 208–216.
[8] Païdoussis M.P. Fluid–structure interactions: slender structures and axial flow. Vol. 1. London, Academic Press, 1998, 572 p.
[9] Ritto T.G., Soize C., Sampaio R. International Journal Non-Linear Mechanics, 2009, pp. 865–876.
[10] Rand O., Stavsky Y. International Journal Solids and Structures, 1991, vol. 28, no. 7, pp. 831–843.
[11] Bochkarev S.A. Vychislitelnaya mekhanika sploshnykh sred — Computational Continuum Mechanics, 2010, vol. 3, no. 2, pp. 24–33.
[12] Blinkova A.Yu. Vestnik SGTU — Vestnik Saratov State Technical University, 2012, no. 1 (68), vol. 4, pp. 7–15.
[13] Khudoynazarov Kh.Kh. Nestatsionarnoe vzaimodeystvie tsilindricheskikh obolochek i sterzhney s deformiruemoy sredoy [Transient interreaction of cylindrical shells and bars with deformable medium]. Tashkent, Abu Ali ibn Sino Publ., 2003, 326 p.
[14] Guz A.N. Prikladnaya mekhanika — International Applied Mechanics, 1980, no. 10, pp. 10–20.
[15] Khudoynazarov Kh.Kh., Abdirashidov A., Burkutboev Sh.M. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 1 (9), pp. 38–51.
[16] Sneddon I.N. Fourier Transforms. New York, McGraw-Hill Publ., 1951, 439 p. [In Russ.: Sneddon I. Preobrazovanie Fure. Moscow, Inostrannaya literatura Publ., 1955, 667 p.].
[17] Samarskiy A.A., Vabishchevich P.N. Vychislitelnaya teploperedacha [Computational heat transfer]. Moscow, Editorial URSS Publ., 2003, 784 p.


Khudoynazarov Kh.Kh., Burkutboyev Sh.M. Mathematical modeling of the rotating cylindrical shell torsional vibrations factored in the internal viscous fluid. Mathematical Modeling and Computational Methods, 2017, №4 (16), pp. 31-47



Download article

Колличество скачиваний: 209