519.62+539.21 Numerical modeling of alloys nanostructure rearrangement by means of molecular dynamics methods

Krasnov I. K. (Bauman Moscow State Technical University), Mozzhorina T. Y. (Bauman Moscow State Technical University), Balanin A. S. (Bauman Moscow State Technical University)

MOLECULAR DYNAMICS METHOD, NANOSTRUCTURE, STRUCTURE REARRANGEMENT, ALLOYS, CRYSTALLINE STRUCTURE, NUMERICAL SIMULATION, INTERATOMIC POTENTIALS


doi: 10.18698/2309-3684-2017-4-316


The article presents a mathematical model of the alloys nanoparticles structure rearrangement dynamics after the instantaneous thermal influence (heating or cooling). The model is based on using the method of molecular dynamics of multicomponent alloys with the Lennard-Jones and Morse interatomic potentials as well as the initial conditions of momentary expansion or compression of the alloy nanoparticle regular crystalline structure. We computationally investigate the regularities of rearranging the initially regular atomic structure of a nanoparticle over time. It is shown that depending on the number of atoms in a nanoparticle various finite settled forms of the alloys nanoparticle are possible, both amorphous and new crystalline structures different from the alloy original crystalline nanostructure. We provide numerical results for the titanium nanoparticles and the titanium-nickel alloy (nitinol).


[1] Nazarov A.A., Mulyukov R.R. Atomisticheskoe modelirovanie materialov, nanostruktur i protsessov nanotekhnologiy Atomistic modeling of materials, nanostructures and processes of nanotechnology]. Ufa, RIO BashGU Publ., 2010, 156 p.
[2] Krasilnikov M.P. Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta — Tomsk State Pedagogical University Bulletin, 2013, no. 8 (136), pp. 170–174.
[3] Gurtov V.A., Osaulenko R.N. Fizika tverdogo tela dlya inzhenerov [Solid-state physics for engineers]. Moscow, Tekhnosfera Publ., 2007, 300 p.
[4] Norman G.E., Stegaylov V.V. Matematicheskoe Modelirovanie — Mathematical Models and Computer Simulations, 2012, vol. 24, no. 6, pp. 3–44.
[5] Gordienko A.B., Kosobutskiy A.V. Fizika kondensirovannogo sostoianiya. Reshenie zadach [Condensed-matter physics. Problem solving]. Kemerovo, KemSU Publ., 2011, 92 p.
[6] Ibragimov I.M., Kovshov A.I., Nazarov Yu.F. Osnovy kompyuternogo modelirovaniya nanosistem [The fundamentals of nanosystems computer simulation]. St. Petersburg, Lan Publ., 2010, 384 p.
[7] Aksenova E.V., Kshevetskiy M.S. Vychislitelnye metody issledovaniya molekulyarnoy dinamiki [Computational methods of molecular dynamics research]. St. Petersburg, Saint Petersburg State University Publ., 2009, 50 p.
[8] Alder B.J., Wainwright T.E. Journal of Chemical Physics, 1957, vol. 37, pp. 1208–1209.
[9] Alder B.J., Wainwright T.E. Journal of Chemical Physics, 1959, vol. 31, no. 2, pp. 459–466.
[10] Gibson J.B., Goland A.N., Milgram M., Vineyard G.H. Physical Review, 1960, vol. 120, pp. 1229–1253. Available at: https://doi.org/10.1103/PhysRev.120.1229 (accessed December 23, 2017).
[11] Rahman A. Physical Review, 1964, vol. 136, pp. A405–A411.
[12] Kadau K., Germann T.C., Lomdahl P.S. International Journal of Modern Physics C, 2004, vol. 15, no. 1, pp. 193–201.
[13] Germann T.C., Kadau K. International Journal of Modern Physics C, 2008, vol. 19, no. 9, pp. 1315–1319.
[14] Vakhrushev A.V., Lipanov A.M. Vychislitelnaya matematika i matematicheskaya fizika — Computational Mathematics and Mathematical Physics, 2006, vol. 47, no. 10, pp. 1774–1783.
[15] Dimitrienko Yu.I., Gubareva E.A., Sborschikov S.V., Bazyleva O.A., Lutsenko A.N., Oreshko E.I. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 2 (6), pp. 3–22.
[16] Dimitrienko Yu.I., Lutsenko A.N., Gubareva E.A., Oreshko E.I., Bazyleva O.A., Sborshchikov S.V. Aviatsionnye materialy i tekhnologii — Aviation Materials and Technologies, 2016, no. 3 (42), pp. 33–48.
[17] Dimitrienko Yu.I., Kashkarov A.I., Makashov A.A. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2007, no. 1, pp. 26–46.
[18] Apeltsin V.F., Mozzhorina T.Yu. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 2 (2), pp. 3–27.
[19] Pozdneev S.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 1 (13), pp. 3–21.


Krasnov I.K., Mozzhorina T.Yu., Balanin A.N. Numerical modeling of alloys nanostructure rearrangement by means of molecular dynamics methods. Маthematical Modeling and Computational Methods, 2017, №4 (16), pp. 3-16



Download article

Колличество скачиваний: 433