539.374 Model of non-isothermal elastoplastic deformation of structural materials under complex loading

Temis Y. M. (Центральный институт авиационного моторостроения им. П.И. Баранова), Hudyakova A. D. (Центральный институт авиационного моторостроения им. П.И. Баранова/Bauman Moscow State Technical University)

PLASTICITY, COMPLEX DEFORMATION, NON-ISOTHERMAL CONDITIONS, PARAMETER DETERMINATION


doi: 10.18698/2309-3684-2017-3-2035


The study introduces a model of elastoplastic deformation of structural alloys under conditions of complex nonisothermal loading. The model is based on the plastic flow theory. Within the research we derived the relations that made it possible to determine the parameters of the model using the results of sample tests according to the program of rigid symmetric cyclic deformation. Moreover, we developed an algorithm for determining the plasticity parameters from a limited set of experimental data. Based on the algorithm developed, we obtained the plasticity parameters for the nickel alloy IN738LC over a wide temperature range.


[1] Temis Yu.M. Teoriya neizotermicheskogo plasticheskogo techeniya s izotropnym i anizotropnym uprochneniem [The theory of nonisothermal plastic flow with isotropic and anisotropic hardening]. Mashinostroenie. Entsiklopediya. Dinamika i prochnost mashin. Teoriya mekhanizmov i mashin. Tom 1–3. V dvukh knigakh. Kniga 1. [Mechanical engineering. Encyclopedia. Dynamics and strength of machines. Theory of mechanisms and machines. Vol. 1–3. In 2 books. Book 1]. Moscow, Mashinostroenie Publ., 1994, pp. 227–231.
[2] Demyanushko I.V., Temis Yu.M. Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela — Mechanics of Solids. A Journal of USSR Academy of Sciences, 1975, vol. 5, pp. 111–119.
[3] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdykh sred [Continuum mechanics. In 4 vols. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[4] Bondar V.S. Neuprugost. Varianty teorii [Inelasticity. Variants of the theory]. Moscow, FIZMATLIT Publ., 2004, 144 p.
[5] Bondar V.S., Danshin V.V. Vestnik PNIPU. Mekhanika — PNRPU Mechanics Bulletin, 2015, no. 1, pp. 43–57. DOI 10.15593/perm.mech/2015.1.04
[6] Zarubin V.S., Kuvyrkin G.N., Saveleva I.Yu. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2014, no. 3 (3), pp. 25–38.
[7] Korotkikh Yu.G., Volkov I.A., Tarasov I.S. Problemy prochnosti i plastichnosti — Problems of strength and plasticity, 2007, no. 69, pp. 79–89.
[8] Khutia N., Dey P.P., Hassan T. Mechanics of Materials, 2015, pp. 12–25. DOI 10.1016/j.mechmat.2015.05.011
[9] Chaboche J.L. International Journal of Plasticity, 2008, vol. 25, no. 10, pp. 1642–1693. DOI 10.1016/j.ijplas.2008.03.009
[10] Radnovich D.C. Methods of extrapolating low cycle fatique data to high stress amplitudes. University of Central Florida, 2007, pp. 49–57.
[11] Temis Yu.M., Fakeev A.I. Izvestiya MGTU “MAMI” (MAMI Bulletin), 2011, pp. 202–208.


Temis Yu.M., Khudyakova A.D., Model of non-isothermal elastoplastic deformation of structural materials under complex loading.Маthematical Modeling and Computational Methods, 2017, №3 (15), pp. 20–37



Download article

Колличество скачиваний: 227