519.8 “Mixed” stochastic models of reciprocal hostilities for the case of one belligerent performing a pre-emptive strike

Chuev V. U. (Bauman Moscow State Technical University), Dubogray I. V. (Bauman Moscow State Technical University)

CONTINUOUS-TIME MARKOV PROCESS, MODELS OF RECIPROCAL HOSTILITIES, COMBAT UNITS, EFFECTIVE RATES OF FIRE, PARAMETER OF THE INITIAL BALANCE OF POWER, PRE-EMPTIVE STRIKE


doi: 10.18698/2309-3684-2017-2-107123


We used the theory of continuous-time Markov processes as the basis for developing our stochastic “mixed” models of reciprocal hostilities and a numerical algorithm that makes it possible to compute main combat metrics for large forces. We show that a pre-emptive strike performed by one of the belligerents significantly affects the outcome and main metrics of combat between forces that are sufficiently similar in strength. We determine that it is not the initial numerical strengths of the two belligerents but their balance of power that affects errors shown by the method of dynamics of mean values; moreover, the errors increase with increasing the time to a pre-emptive strike.


[1] Zarubin V.S., Kuvyrkin G.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods , 2014, no. 1, pp. 5–17.
[2] Aleksandrov А.А., Dimitrienko Yu.I. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods , 2014, no. 1 (1), pp. 3–4.
[3] Chuev Yu.V. Issledovanie operatsiy v voennom dele [Investigation of military operations]. Moscow, Voenizdat Publ., 1970, 270 p.
[4] Tkachenko P.N. Matematicheskie modeli boevykh deystviy [Mathematical models of military operations]. Moscow, Sovetskoe radio Publ., 1969, 240 p.
[5] Dubogray I.V., Dyakova L.N., Chuev V.Yu. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation , 2013, no. 7. Available at: http://engjournal.ru/catalog/mathmodel/hidden/842.html (accessed October 15, 2017).
[6] Lanchester F. Aircraft in warfare: the dawn of the fourth arm . London, Constable and Co, 1916, 243 p.
[7] Taylor J.G. Operations-Research-Spectrum , 1980, vol. 1 (3), pp. 199–205.
[8] Chen X., Jing Y., Li C., Li M. Journal of Science and Systems Engineering , 2012, vol. 21 (1), pp. 94–105.
[9] Venttsel E.S. Issledovanie operatsiy: zadachi, printsipy i metodologiya [Research operations: tasks, principles and methodology]. Moscow, URSS Publ., 2006, 432 p.
[10] Chuev V.Yu., Dubogray I.V. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences , 2015, no. 2, pp. 53–62.
[11] Chuev V.Yu., Dubogray I.V. Vestnik MGTU im. N.E .Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences , 2017, no. 4, pp. 16–28.
[12] Chuev V.Yu. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki. Spets.vypusk “Matematicheskoe modelirovanie” — Herald of the Bauman Moscow State Technical University. Series Natural Sciences , Spec. issue “Mathematical Modeling” , 2011, pp. 223–232.
[13] Winston W.L. Operations research: applications and algorithms . Belmont, Duxbury Press, 2001, 128 p.
[14] Alekseev O.G., Anisimov V.G., Anisimov E.G. Markovskie modeli boya [Markov's combat models]. Moscow, the USSR Ministry of Defense, 1985, 85 p.
[15] Venttsel E.S. Teoriya veroyatnostey [Probability Theory]. Moscow, KnoRus, 2016, 658 p.
[16] Chuev V.Yu., Dubogray I.V. Vestnik MGTU im. N.E. Baumana. Mashinostroenie — Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering , 2016, no. 3, pp. 118–124.
[17] Dubogray I.V., Chuev V.Yu. Nauka i obrazovanie: elektronnoe nauchnoe izdanie — Scientific edition of Bauman MSTU Science and Education , 2013, no. 10. DOI 10.7463/1013.0617171
[18] Chuev V.Yu., Dubogray I.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods , 2016, no. 2 (10), pp. 69–84.
[19] Hillier F.S., Lieberman G.J. Introduction to operations research . New York, MeGrew-Hill, 2005, 998 p.
[20] Jaswall N.K. Military Operations research: quantitative decision making . Boston, Kluwer Academic Publishers, 1997, 388 p.
[21] Taylor J.G. Force-on-forceattrition modeling. Military Applications Section of Operations Research Society of America, 1980, 320 p.
[22] Shamahan L. Dynamics of model battles. New York, Physics Department, State University of New York, 2005, pp. 1–43.
[23] Chuev V.Yu., Dubogray I.V. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods , 2016, no. 1, pp. 89–104.
[24] Pashkov N.Yu., Strogalev V.P., Chuev V.Yu. Oboronnaya tekhnika — Defense technology , 2000, no. 9–10, pp. 19–21.
[25] Chuev V.Yu., Dubogray I.V. Modeli dinamiki srednikh dvukhstoronnikh boevykh deystviy mnogochislennykh gruppirovok [Dynamics models of the average bilateral military operations of numerous groupings]. Saarbryukken, LAP LAMBERT Academic Publishing, 2014, 72 p.
[26] Chuev V.Yu., Dubogray I.V., Dyakova L.N. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods , 2017, no. 1, pp. 91–101.


Chuev V. Yu., Dubogray I.V. “Mixed” stochastic models of reciprocal hostilities for the case of one belligerent performing a pre-emptive strike. Маthematical Modeling and Coтputational Methods, 2017, №2 (14), pp. 107-123



Download article

Колличество скачиваний: 145